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Injective Modules and
Matlis Duality

Notes on “24 Hours of Local Cohomology”

William D. Taylor

We take R to be a commutative ring, and will discuss the theory of injective
R-modules. The following facts are commonly used results:

(1) For any R-module M , there is a unique smallest injective module contain-
ing M , denoted ER(M) and called the injective hull. It has the property
that any injective module containing M has ER(M) as a submodule.

(2) Any injective module over a noetherian ring has a unique direct sum de-
composition into indecomposable injective modules.

(3) The indecomposable injective modules of a noetherian ring are of the form
ER(R/p) for p ∈ SpecR.

(4) Matlis Duality Suppose (R,m) is a complete local ring, E = ER(R/m),
and (−)∨ is the R-module functor HomR(−, E). Then

(a) If M is noetherian, then M∨ is artinian.

(b) If M is artinian, then M∨ is noetherian.

(c) If M is noetherian or artinian, then M ∼= M∨∨.

Note: We say a module M is noetherian if it satisfies the ascending chain
condition on submodules, and that it is artinian if it satisfies the descending
chain condition on submodules.
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2 APPENDIX A. INJECTIVE MODULES AND MATLIS DUALITY

A.1 Essential Extensions

Definition A.1. An R-module E is injective if the functor HomR(−, E) is
exact; i.e. if for every injective map of R-modules f : M → N and R-module
homomorphism g : M → E, there exists h : N → E such that g = h ◦ f .

Theorem A.2 (Baer’s criterion). An R-module E is injective if and only if
for every ideal a ⊆ R and R-module homomorphism f : a→ E, there exists an
R-module homomorphism g : R→ E such that g|a = f .

Note that since the zero homomorphism can always be extended (trivially),
we may consider only the nonzero ideals a and nonzero homomorphsims a→ E
when confirming the injectivity of an R-module using Baer’s Criterion.

Exercise A.3. If E and E′ are R-modules, then E⊕E′ is injective if and only
if E and E′ are injective.

Solution. Suppose E ⊕ E′ is injective. Let a ⊆ R be an ideal and f : a → E
be an R-module homomorphism. Then f ⊕ 0 : a → E ⊕ E′ is an R-module
homomorphism, and therefore there exists g : R → E ⊕ E′ extending f ⊕ 0.
Therefore π1 ◦ g : R → E is a homomorphism, and for x ∈ a, (π1 ◦ g)(x) =
π1(g(x)) = π1(f(x), 0) = f(x), so π1 ◦ g extends f . Therefore E is injective by
Baer’s criterion. By a symmetric argument, so is E′.

Suppose E and E′ are injective, a ⊆ R is an ideal, and f : a → E ⊕ E′ is
an R-module homomorphism. Then π1 ◦ f : a → E and π2 ◦ f : a → E′ are
R-module homomorphisms, hence they extend to g : R → E and g′ : R → E′.
Therefore g ⊕ g′ : R → E ⊕ E′ is an R-module homomorphism, and for x ∈ a,
(g ⊕ g′)(x) = (g(x), g′(x)) = (π1(f(x)), π2(f(x))) = f(x). Hence g ⊕ g′ extends
f , and so E ⊕ E′ is injective by Baer’s Criterion.

If R is a domain, we say that an R-module M is divisible if for all r ∈ R\{0},
r ·M = M , i.e. for every m ∈M , there exists m′ ∈M such that m = r ·m′.

Exercise A.4 (Part 1). If R is a domain, then all injective R-modules are
divisible, and if in addition R is a P.I.D., then all divisible R-modules are in-
jective.

Solution. Suppose R is a domain and E is an injective R-module. For any
r ∈ R \ {0} and e ∈ E we can define a map f : rR→ E by setting f(r) = e and
extending linearly. Since E is injective there exists an R-module homomorphism
g : R→ E extending f , and r · g(1) = g(r) = e. Therefore E is divisible.

Suppose that R is a P.I.D. and M is a divisible module. Let a = aR ⊆ R
be a nonzero ideal of R and let f : aR → M be an R-module homomorphism.
Since M is divisible we can find m ∈M such that a ·m = f(a). Let g : R→M
be defined by g(r) = r ·m. Then g is an R-module homomorphism and we have
that g(a) = a ·m = f(a). Therefore g extends f , and so M is injective.

As an immediate application of the above exercise, we have that Q/dZ is an
injective Z-module for d ∈ Z.
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Exercise A.4 (Part 2). Every nonzero abelian group has a nonzero homomor-
phism to Q/Z, and if we let (−)∨ = HomZ(−,Q/Z), then for each Z-module M ,
the natural map M →M∨∨ is injective.

Solution. Let G be a nonzero abelian group, i.e. a nonzero Z-module. Let x ∈ G
and let H = Z · x ⊆ G be a submodule of G. Define f : H → Q/Z as follows: if
n · x 6= 0 for n > 0, then f(x) = 1

2 + Z ∈ Q/Z. Otherwise, let n be the smallest
positive integer such that n · x = 0, and set f(x) = 1

n + Z ∈ Q/Z. Then f is a
well-defined Z-module homomorphism from H to Q/Z. But since we have an
injective map (namely inclusion) from H to G and Q/Z is injective (by the above
exercise), there exists an R-module homomorphism g : G → Q/Z extending f .
Therefore g is nonzero, and the first statement is proved. In particular we have
proved more: given any nonzero x ∈ G we can find a Z-module homomorphism
g : G→ Q/Z such that g(z) 6= 0.

Now let M be any Z-module. The natural map

M →M∨∨ = HomZ(HomZ(M,Q/Z),Q/Z)

takes m 7→ (f 7→ f(m)). Suppose 0 6= m ∈ M . Then by the last sentence of
the previous paragraph, we can find f ∈ HomR(M,Q/Z) such that f(m) 6= 0.
Therefore m is not in the kernel of the map M → M∨∨. Therefore the kernel
of this map is 0, i.e. the map is injective.

Exercise A.5. Let R be an A-algebra. Then

(1) If E is an injective A-module and F is a flat R-module, then HomA(F,E)
is an injective R-module; and

(2) Every R-module embeds in an injective R-module.

The solution is below is modified from Mel Hochster’s local cohomology
notes, page 6.

Solution. By definition, HomA(F,E) is an injective R-module if the functor
HomR(−,HomA(F,E)) is exact. For anyR-moduleM , HomR(M,HomA(F,E)) ∼=
HomA(M⊗RF,E) by the adjointness of Hom and ⊗. Since F is a flat R-module,
the functor −⊗R F is exact, and since E is an injective A-module, the functor
HomA(−, E) is exact. Therefore HomR(−,HomA(F,E)) ∼= HomA(− ⊗R F,E)
is the composition of two exact functors, hence is exact. This proves part (1).

Let M be an R-module. Letting (−)∨ be the functor HomZ(−,Q/Z), we
have that M →M∨∨ is injective by exercise A.4(4). Let F be a flat (e.g. free) R-
module and f anR-module homomorphism such that f : F → HomZ(M,Q/Z) =
M∨ is surjective. Since (−)∨ is a left-exact contravariant functor on R-modules,
f∨ : M∨∨ → F∨ is injective. Therefore M embeds in F∨. But since Q/Z is an
injective Z-module and R is a Z-algebra (since any ring is), F∨ = HomZ(F,Q/Z)
is an injective R-module by part (1).

Proposition A.6. Let θ : M → N be an injective map of R-modules. The
following are equivalent:
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(1) For any homomorphism ε : N → Q, if ε ◦ θ is injective, then so is ε.

(2) Every nonzero submodule of N has nonzero intersection with θ(M).

(3) Every nonzero element of N has a nonzero multiple in θ(M).

Proof. Since θ is injective, we can identify M with θ(M) and write M ⊆ N . In
this context, ε ◦ θ = ε|M .

(1) ⇒ (2): Let N ′ be a nonzero submodule of N . Then the quotient map
ε : N → N/N ′ is not injective, and so we must have that ε|M is not injective.
Therefore there exists 0 6= m ∈M such that ε(m) = 0 +N ′, i.e. m ∈ N ′.

(2) ⇒ (3): Let 0 6= n ∈ N and consider the submodule R · n ⊆ N . By our
hypothesis, there exists 0 6= m ∈M ∩R · n, i.e. n has a nonzero multiple in M .

(3) ⇒ (1): Let ε : N → Q be an R-module homomorphism such that ε|M
is injective. Let 0 6= n ∈ N , and take r ∈ R such that 0 6= r · n ∈ M . Then
ε(r · n) = ε|M (r · n) 6= 0. Therefore r · n 6= 0, i.e. n 6= 0. Therefore ε is injective.

For good measure we prove some additional implications
(2) ⇒ (1) Let ε : N → Q be an R-module homomorphism such that ε|M is

injective. If ker ε 6= 0, then there exists 0 6= m ∈ ker ε ∩M = ker ε|M = 0, a
contradiction. Therefore ε is injective.

(3) ⇒ (2) Suppose N ′ ⊆ N is a nonzero submodule. Then there exists
0 6= n ∈ N ′, and so there exists r ∈ R such that r ·n ∈M . Since r ·n ∈ N ′ also,
we have that M ∩N ′ 6= 0.

Definition A.7. If θ : M ↪→ N satisfies any of the conditions of the above
proposition, we say that N is an essential extension of M .

Example A.8. If U ⊆ R is a multiplicative system of nonzerodivisors of R
then U−1R is an essential extension of R.

That U contain only zerodivisors of R is necessary for the natural map
R → U−1R to be injective. If 0 6= r

u ∈ U
−1R then u · ru = r

1 and r
1 is in the

image of R, so U−1R is an essential extension of R.

Example A.9. Let (R,m) be a local ring and N an m-torsion R-module (this
means that every element of N is killed by some power of m). Then the socle
of N is denoted and defined as soc(N) = (0 :N m). The extension soc(N) ⊆ N
is essential: If 0 6= y ∈ N , let t be the smallest integer such that mty = 0. Then
mt−1y = 0, i.e. y has a nonzero multiple in soc(N).

Exercise A.10. Let I be an indexing set, and for each i ∈ I let Mi and Ni be
R-modules. Then

⊕
i∈IMi ⊆

⊕
i∈I Ni is essential if and only if Mi ⊆ Ni is

essential for each i ∈ I.

Solution. Suppose that
⊕

i∈IMi ⊆
⊕

i∈I Ni is essential, and fix j ∈ I. Let
0 6= Lj ⊆ Nj be anR-module. Then L = Lj⊕

⊕
i∈I\{j} 0 is a nonzero submodule

of
⊕

i∈I Ni. Therefore

0 6= L ∩
⊕
i∈I

Mi = (Lj ∩Mj)⊕
⊕

i∈I\{j}

0,
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and so Lj ∩Mj 6= 0. Hence Mj ⊆ Nj is essential.
Now suppose that Mi ⊆ Ni is essential for each i ∈ I. Let 0 6= L ⊆

⊕
i∈I Ni.

Then L =
⊕

i∈I Li, where Li = L ∩Ni. Choose i ∈ I such that Li 6= 0. Then
since Mi ⊆ Ni is essential, Mi ∩ Li 6= 0, hence

⊕
i∈IMi ∩ L 6= 0. Therefore⊕

i∈IMi ⊆
⊕

i∈I Ni is essential.

Exercise A.11. Let k be a field, R = k[[x]], and N = Rx/R. Then soc(N) ⊆ N
is essential and

∏
N soc(N) ⊆

∏
NN is not essential.

Solution. The ring R is local with maximal ideal m = (x) and the elements of
N are of the form f

xk +R for some k ∈ N and f ∈ k[x] with degree less than k.

For any such element, mk = (xk) kills that element. Therefore N is m-torsion,
an so by example A.9, soc(N) ⊆ N is essential.

Now consider the extension
∏

N soc(N) ⊆
∏

NN . Let y ∈
∏

NN be given by
yi = 1

xi +R. Let 0 6=
∑
i∈N gi ∈ R be any nonzero element of R. Let j ∈ N such

that g ∈ (xj)\(xj+1). Then the j+2th coordinate of g·y is g
xj+2 +R =

gj+gj+1x
x2 +

R. But this element is not in soc(N) since x ·
(
gj+gj+1x

x2 +R
)

=
gj
x + R 6= 0.

Therefore g · y /∈
∏

N soc(N), and so
∏

N soc(N) ⊆
∏

NN is not essential.

Proposition A.12. Let L ⊆M ⊆ N be nonzero R-modules.

(1) L ⊆ N is essential if and only if L ⊆M and M ⊆ N are essential.

(2) Let I be an index set and let Ni be R-modules such that for each i, M ⊆
Ni ⊆ N and

⋃
iNi = N . Then M ⊆ N is essential if and only if each

M ⊆ Ni is essential.

(3) There exists a unique module N ′ ⊆ N with M ⊆ N ′ ⊆ N maximal with
respect to the property that M ⊆ N ′ is essential.

Proof. (1) Suppose L ⊆ N is essential. Let 0 6= M ′ ⊆M ⊆ N and 0 6= N ′ ⊆ N .
Then M ′∩L 6= 0 since L ⊆ N is essential and N ′∩M ⊇ N ′∩L 6= 0 since L ⊆ N
is essential. Therefore L ⊆ M and M ⊆ N are essential. Now suppose L ⊆ M
and M ⊆ N are essential and let 0 6= N ′ ⊆ N . Then M ∩ N ′ ⊆ M 6= 0 since
M ⊆ N is essential, and therefore L ∩ (M ∩N ′) 6= 0 since L ⊆ M is essential.
But since L ∩N ′ ⊇ L ∩ (M ∩N ′), we’re done.

(2) Suppose M ⊆ N is essential. Fix i ∈ I and let 0 6= N ′i ⊆ Ni. Then
N ′i ⊆ N , and since M ⊆ N is essential, M ∩ N ′i 6= 0. Therefore M ⊆ Ni is
essential. Now suppose M ⊆ Ni is essential for all i ∈ I. Let 0 6= N ′ ⊆ N .
Since N =

⋃
iNi, there exists i ∈ I such that N ′ ∩ Ni 6= 0. Since M ⊆ Ni is

essential, M ∩N ′ ⊇M ∩ (N ′ ∩Ni) 6= 0. Therefore M ⊆ N is essential.
(3) Let S = {S ⊆ N |M ⊆ S is essential} and order S by inclusion. Let

S1 ⊆ S2 ⊆ · · · be an increasing sequence of elements of S. Then since each
Si is essential over M , so is S∞ =

⋃
i∈N Si, and we have that S∞ ⊃ Si for all

i ∈ N. Therefore S∞ is a maximal element for the increasing sequence, and by
Zorn’s Lemma, there exist maximal elements of S. Let S, S′ be two maximal
elements of S. Then since M ⊆ S and M ⊆ S′ are both essential extensions, so
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is M ⊆ S ∪ S′. So S ∪ S′ ∈ S and S ∪ S′ ⊇ S, S′, and so by the maximality of
S and S′ we must have that S = S ∪ S′ = S′. Therefore the maximal element
of S is unique.

Definition A.13. The module N ′ in Proposition A.12(3) is called the maximal
essential extension of M in N . If M ⊆ N is essential and N has no proper
essential extensions, then N is called a maximal essential extension of M .

Proposition A.14. Let M be an R-module. The following are equivalent:

(1) M is injective;

(2) every injective homomorphism M ↪→ N splits;

(3) M has no proper essential extensions

Proof. (1) ⇒ (2): Let f : M → N be an injective homomorphism. Since M
is injective and idM : M → M is a homomorphism, idM extends to a map
g : N →M . Therefore g splits f .

(2) ⇒ (3): Suppose M ⊆ N is an essential extension. Then there is a
splitting f : N → M of the inclusion map ι. Since f ◦ ι is the identity map,
it is injective, and so since M ⊆ N is essential, f is injective. Therefore f is
bijective and so M = N .

(3) ⇒ (1): By Exercise A.5 we can embed M in an injective module E.
If N1 ⊆ N2 ⊆ · · · is an increasing sequence of submodules of E such that
Ni∩M = 0 for all i, then M ∩

⋃
i∈NNi = 0. Therefore there exists a submodule

N of E maximal with respect to the property of having zero intersection with
M by Zorn’s Lemma. So now f : M → E/N is an essential extension, hence
M ∼= E/N . Therefore E = M + N and since M ∩ N = 0, we have that
E = M ⊕N . Since M is a direct summand of an injective module, M is itself
injective.

Note in particular that this means that if E is an injective module and
E ⊆M for some R-module M , then M ∼= E ⊕ F for some R-module F .

Proposition A.15. Let M be an R-module. If M ⊆ E with E injective, then
the maximal essential extension of M in E is an injective module, hence a direct
summand of E. Maximal essential extensions of M are isomorphic.

Definition A.16. The maximal essential extension of M is called the injective
hull of M and is denoted ER(M) (or E(M) if the ring is understood).

Definition A.17. Let M be an R-module. An injective resolution of M is a
complex of injective R-modules

0 −→ E0 ∂0

−→ E1 ∂1

−→ E2 ∂2

−→ · · ·

with H0(E•) = M and Hi(E•) = 0 for i ≥ 1; it is called minimal if E0 =
ER(M), E1 = ER(E0/M), and Ei+1 is the injective hull of coker ∂i for each
i ≥ i.
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A.2 Noetherian rings

We can characterize noetherian rings using injective modules

Proposition A.18. A ring R is noetherian if and only if every direct sum of
injective R-modules is injective.

We have already seen that the direct sum of two injective modules (and
hence of finitely many) is injective; the content of the above proposition lies in
the infinite direct sum case. The only part of the proof that we need to fill in the
details of is the following: Given a chain of ideals a1 ⊆ a2 ⊆ · · · of R and setting
a =

⋃
i∈N ai, we have natural homomorphisms a ↪→ R →→ R/ai ↪→ ER(R/ai).

From these we have a homomorphism a →
∏
i∈NER(R/ai). We need to show

that this map factors through
⊕

i∈NER(R/ai). Indeed, let x ∈ a. Then there
exists j ∈ N such that x ∈ ai for all i ≥ j. So for any i ≥ j, the map R→→ R/ai
takes x to 0. Therefore the image of x in

∏
i∈NER(R/ai) is zero for indices

greater than or equal to j, i.e. x ∈
⊕

i∈NER(R/ai). This completes the last
part of the proof of the proposition.

Definition A.19. An R-module M is called a-torsion for an ideal a of R if
every element of M is killed by some power of a.

Theorem A.20. Let p be a prime ideal of a noetherian ring R and set κ =
Rp/pRp, the fraction field of Rp. Let E = ER(R/p).

(1) If x ∈ R \ p then E
x−→ E is an isomorphism, hence E = Ep;

(2) (0 : Ep) = κ;

(3) κ ⊆ E is an essential extension of Rp-modules and E = ERp
(κ);

(4) E is p-torsion and Ass(E) = {p};

(5) HomRp
(κ,E) ∼= κ and HomRp

(κ,ER(R/q)p) = 0 for primes q 6= p.

Injective modules, for all their foibles, have a structure theorem when R is
noetherian.

Theorem A.21. Let R be an injective module over a noetherian ring R. There
exists a direct sum decomposition

E ∼=
⊕

p∈SpecR
ER(R/p)µp

and the numbers µp are independent of the decomposition.

Proposition A.22. Let U ⊆ R be a multiplicative set.

(1) If R is an injective R-module, the U−1R-module U−1E is injective (injec-
tive modules localize).
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(2) If M ⊆ N is a (maximal) essential extension of R-modules, then U−1M ⊆
U−1N is a (maximal) essential extension of U−1R-modules (essential ex-
tensions localize).

(3) The indecomposable injectives over U−1R are the modules ER(R/p) for
p ∈ SpecR with p ∩ U = ∅.

Definition A.23. Let M be an R-module and E• its minimal injective resolu-
tion. For each i, we have a decomposition

Ei =
⊕

p∈SpecR
ER(R/p)µi(p,M).

The number µi(p,M) is called the ith Bass number of M with respect to p. It
is well-defined according to the following theorem:

Theorem A.24. Let R be a noetherian ring and M an R-module. Let p be a
prime ideal, and set κ = Rp/pRp. Then

µi(p,M) = rankκExtiRp
(κ,Mp).

We call a homomorphism of local rings ϕ : (R,m) → (S, n) a local homo-
morphism if ϕ(m) ⊆ n.

Theorem A.25. Let ϕ : (R,m, k)→ (S, n, `) be a local homomorphism of local
rings. If S is module-finite over R, then HomR(S,ER(k)) = ES(`).

Remark A.26. Let (R,m, k) be a local ring. Then the above theorem states
that for any ideal a of R we have that ER/a(k) = (0 :ER(k) a), and since ER(k)
is m-torsion, we have

ER(k) =
⋃
t∈N

(0 :ER(k) m
t) =

⋃
t∈N

ER/mt(k).

A.3 Artinian rings

We define the length of a module (denoted `(M)) as the supremum of the lengths
of a composition series 0 = M0 (M1 (M2 ( · · · (M . If 0→M1 −→M2 −→
M3 → 0 is a short exact sequence of R-modules then `(M2) = `(M1) + `(M2).
If R is a local ring, then the residue field is the only simple module of R and so
the subquotients in a composition series for M are all isomorphic to it.

Lemma A.27. Let R be a local ring with residue field k, set (−)∨ = HomR(−, ER(k)),
and let M be an R-module. Then

(1) The natural map M →M∨∨ is injective;

(2) `(M∨) = `(M)
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In particular, point (2) implies that M∨ = 0 if and only if M = 0, i.e. that
(−)∨ is a faithful functor.

Corollary A.28. `(ER(k)) = `(R).

In particular, ER(k) has finite length if and only if R is artinian.

Theorem A.29. Let R be a local ring. Then R is an injective R-module if and
only if it is artinian and rankksoc(R) = 1.

A.4 Matlis duality

Remark A.30. Let a ⊆ R be an ideal and let M be an R-module. Then there
are natural surjections

· · · −→M/a3M −→M/a2M −→M/aM −→ 0.

The a-adic completion of M , denoted M̂ , is the inverse limit of this system:

lim
←−
i

(M/aiM) =

{
(...,m2,m1) ∈

∏
i

M/aiM | mi+1 −mi ∈ aiM

}

There is a canonical homomorphism of R-modules M → M̂ . The salient prop-
erties of this construction are summarized below:

(1) ker(M → M̂) = ∩i∈NaiM ;

(2) R̂ is a ring and R→ R̂ is a ring homomorphism;

(3) M̂ is an R̂-module and M → M̂ is compatible with these structures.

When R is noetherian, then also

(4) The ring R̂ is noetherian;

(5) If (R,m) is local, then R̂ is local with maximal ideal mR̂;

(6) If M is finitely generated, then M̂ = R̂ ⊗R M , and so M̂ is a finitely

generated R̂-module;

(7) One has R̂/aiR̂ ∼= R/ai for each i. If M is a-torsion, then it has a natural

R̂-module structure and the map M → R̂⊗RM is an isomorphism;

(8) If M and N are a-torsion, then HomR̂(M,N) = HomR(M,N).

Theorem A.31. Let (R,m, k) be a local ring, R̂ ists m-adic completion, and

set E = ER(k). Then ER̂(k) = E, and the map R̂ → HomR(E,E) taking r to
the homomorphism e 7→ r · e (“multiplication by r”) is an isomorphsim.
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Corollary A.32. For a local ring (R,m, k), the module ER(k) is artinian.

Theorem A.33. Let (R,m, k) be a local ring and M an R-module. The follow-
ing conditions are equivalent:

(1) M is m-torsion and rankksoc(M) is finite of rank t;

(2) M is an essential extension of a k-vector space of finite rank t;

(3) M can be embedded in a direct sum of t copies of ER(k);

(4) M is artinian.

Proof. (1) =⇒ (2): Since M is m-torsion, soc(M) ⊆M is essential by example
A.9.

(2) =⇒ (3): Suppose that M is essential over a k-vector space V of finite
rank t. Let e1, . . . , et be a k-basis for V . Then V =

⊕t
i=1 kei, and so

ER(V ) ∼= ER

(
t⊕
i=1

kei

)
∼=

t⊕
i=1

ER(k).

Since M is an essential extension of V , we know that M ⊆ E(V ), so we’re done.
(3) =⇒ (4): By Corollary A.32, we know ER(k) is artinian, therefore any

finite direct sum of copies of ER(k) is artinian. Therefore any submodule of a
finite direct sum of copies of ER(k) is artinian.

(4) =⇒ (1): If m ∈ M is any element, Rm ⊇ mm ⊇ m2m ⊇ · · · is a
descending chain of modules, hence it stabilizes. Therefore there exists j ≥ 0
such that mj+1m = mjm, and therefore m(mjm) = mjm. By Nakayama’s
lemma, mjm = 0, so M is m-torsion. Since M is artinian and soc(M) ⊆ M ,
soc(M) is artinian. But then rankksoc(M) is equal to the length of soc(M)
as a k-module. Since ever element of soc(M) is killed by m, soc(M) ⊗R k ∼=
soc(M)⊗R R/m ∼= soc(M)⊗R R =∼= soc(M), and so the length of soc(M) as a
k-module is equal to the length of soc(M) as an R-module.

Example A.34. Let (R,m, k) be a DVR with m = xR (e.g., R = k[[x]]).
Then ER(k) ∼= Rx/R: Rx/R is divisible since if 0 6= f ∈ R is not a unit, then
f ∈ mj \mj+1 for some j, and so f

xj is a unit, hence

f · (Rx/R) = (f ·Rx)/R =

(
f

xj
Rx

)
/R = Rx/R.

Therefore Rx/R is an injective R-module since R is a P.I.D. Furthermore, it is
(x)-torsion: if f

xk +R ∈ Rx/R, then (x)k annihilates it. The socle is

soc(Rx/R) =

{
f

xk
+R | f ∈ R, xf

xk
∈ R

}
=
{a
x

+R | a ∈ R \ (x)
}

and so it is generated by 1
x as a R/(x)-module. Therefore Rx/R is (x)-torsion

and rankksoc(Rx/R) = 1. Therefore Rx/R is an essential extension of k and
Rx/R ⊆ ER(k) by Theorem A.33. Since Rx/R is injective, Rx/R = ER(k).
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Theorem A.35 (Matlis Duality). Let (R,m, k) be a complete local ring, let
(−)∨ = HomR(−, ER(k)), and let M be an R-module. Then

(1) If M is noetherian (resp. artinian) then M∨ is noetherian (resp. artinian);

(2) If M is artinian or noetherian, then the map M → M∨∨ is an isomor-
phism.

Remark A.36. Let M be a finitely generated module over a complete local
ring (R,m, k). One has isomorphisms

HomR(k,M∨) ∼= HomR(k ⊗RM,ER(k))
∼= HomR(M/mM,ER(k))
∼= Homk(M/mM,k).

Thus the number of generators of M as an R-module is rankksoc(M∨); this
number is the type of M∨.


