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Abstract

In this paper we consider the group-theoretic analogue of Galois Theory. That is,

given a group G and a natural number n, we find groups H such that G can be embed-

ded into H in such a way that every element of G has an nth root in H. It is not difficult

to see (and we prove) that given any group G and natural number n such an extension

of G exists. In this paper, we attempt to find the smallest order of such an extension,

which we will call the minimal n-index of G. We answer the question completely for

cyclic groups. Further, we examine certain ways of constructing new groups from old,

in particular the direct and semidirect product, and determine how these constructions

interact with the minimal n-index of G. We conclude with some conjectures regarding

the minimal n-index and some questions to inspire further research.
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1 Introduction

One of the most natural questions that arises when an algebraic object is explored is

the question of solvability of equations. Under what conditions, we ask, can a certain type

of equation or system of equations be solved? This question is examined by high school

students in the case when we are dealing with the real or complex numbers. More advanced

subjects allow for the same questions to be asked of different algebraic structures. Galois

Theory in particular is reminiscent of our efforts in this paper, and indeed this paper could

be thought of as a generalization of Galois Theory, in that we are studying groups rather

than fields. Unfortunately, this generalization means we must do without much of the

structure afforded us by fields.

In this paper we will be looking at the solvability of the equation Xn = g where n ∈ N

is a fixed natural number and g is an element in a given group G. As in the real numbers,

this equation is often unsolvable for certain values of g. For instance, in the dihedral group

D8, there is no transformation that when squared yields a reflection. We can “fix” this by

thinking of the group G as sitting inside a larger group, in much the same way that we

think of the real numbers as sitting inside the complex. However, we will not require as

much as is given by the extension from R to C. What we will be looking for is a group H

“containing” G such that every element of G has an nth root in H.
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2 Definitions and Notation

We will have some standard notation that we will use as shorthand for more unwieldly

statements that would become tedious to write repeatedly. Our desire to be consistent

and write all groups multiplicatively prompts us to abandon the traditional notation for

cyclic groups, namely Zm for finite and Z for infinite cyclic groups. Since these groups,

when written in the traditional manner, are almost always written additively, rather than

attempting to constantly keep track of whether we are in an additive or multiplicative case,

or (perhaps worse) use the traditional notation with a nontraditional operation, we will

simply abandon the old notation and use a new one.

Notation 1. In all but one subsection, groups in this paper will be written multiplicatively.

Additionally, certain groups will have particular symbols that will be used consistently. Cm

will be the cyclic group of order m; Cma will be the cyclic group of order m with generator

a (where a will vary). Similarly, C∞ will be the infinite cyclic group, and C∞a the infinite

cylic group with generator a. We will use Dm to indicate the dihedral group of order 2m,

i.e. the group of symmetries of a regular m-gon.

We now define the basic terms upon which our entire discussion will be based.

Definition 1. Let G be a group and n ∈ N be a natural number.

• Let Ωn(G) = {g ∈ G | ∃(x ∈ G)(xn = g)} be the set of elements in G which have

nth roots.

• The group G will be called n-divisible if Ωn(G) = G. The group G will be called

divisible if G is n-divisible for all n ∈ N.

• If H is a group such that G∼= G′≤H and G′⊂Ωn(H), then G is said to be n-divisible

in H and H is said to be an n-power extension of G . If G is n-divisible in H for all

n ∈ N, we say G is divisible in H, and H is a power extension of G.
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• If H is a group and G is n-divisible in H, then any injective homomorphism f : G→H

such that f (G) ⊂ Ωn(H) is called an n-embedding of G into H, or simply an n-

embedding if the groups are understood. We will sometimes combine many of the

previous definitions by simply writing f : G ↪→n H, which will mean that f is an

n-embedding of G into H.

• If f : G ↪→n H and [H : f (G)] = m, then H is said to be an n-power extension of order

m. Let

µn (G) = min
f ,H
{[H : f (G)] | f : G ↪→n H} ∈ N∪{∞} .

This is called the minimal n-index of G.

• If G is a group and H is a power extension of G, then any injective homomorphism

f : G→ H such that f (G) ⊂ Ωn(H) for all n ∈ N is called a power embedding of G

into H.

Intuitively, µn (G) indicates how much bigger an n-power extension of G has to be.

When G is a finite group, say of order m, then m · µn (G) is the smallest size that any n-

extension of G can be. The following Lemma is immediate from the definiton and basic

properties of groups.

Lemma 1. For any group G that possesses an n-power extension, µn (G)≥ 1.

Much of this paper will be devoted to finding the values of µn (G) for various families

of groups. This will tell us how hard we have to work to have nth roots of everything in G.

Many of our proofs and examples will be constructive. In some cases, we will not be able

to give exact values of µn (G), but will be able to place bounds on it.

We must begin by making the argument that the definition of minimal n-index is well-

defined for every group G. We begin by recalling the definition of a presentation of a group.

The following definiton is adapted from [Dum]. Recall that for any set G and subset S⊂G,
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smallest subgroup of G that contains all the elements of S is called the subgroup generated

by S and is denoted 〈S〉.

Definition 2. Let G be a group and let S be a subset of G. If S ⊂ G and 〈S〉 = G, then a

presentation of G is a pair 〈S : R〉, where R is a set of words in F(S) (the free group on

S) such that the normal closure of 〈R〉 in F(S) (i.e. the smallest normal subgroup of F(S)

containing 〈R〉) equals the kernel of the homomorphism π : F(S)→ G, where π acts as the

identity on the elements of S. The elements of S are called generators and those of R are

called relations of G.

Intuitively, S gives the “building blocks” for the group G and R tells how those blocks

combine together. The elements of R are of the form sα1
1 sα2

2 · · ·sαm
m for some si ∈ S and

αi ∈ Z. The fact that this word is in R means that in the group G, sα1
1 sα2

2 · · ·sαm
m = 1. The

relations in R are sometimes written as equations rather that as words. In addition, when

the numbers of generators and relations are small, the presentation of G is often written as

〈s1,s2, . . . ,sm : r1,r2, . . . ,rk〉, with the elements of S and R listed. Many times, we abuse

the notation slightly and write that a group is equal to its presentation, e.g. G = 〈S : R〉.

This should in general cause no confusion.

For example, a presentation of the finite cyclic group Cm is 〈a : am〉. The infinite cyclic

group has no relations. In this case, we write a dash in the second coordinate of the pre-

sentation notation, as so: C∞ = 〈a : −〉. By way of further example, the dihedral group

Dm has the presentation Dm =
〈
r,s : rm = s2 = 1,rs = sr−1〉. This notation, involving the

equations in the second coordinate, is a convenient way to write and understand the rela-

tions. In order to write this according to the technical definition, we would solve each of

the equations for the identity 1 on one side, and then the other side of the equation would

be the word in R. So for this example, we might write G = 〈S : R〉, where S = {s,r},

R =
{

rm,s2,rsrs−1}.

This digression into presentations will be of use to us in the next very important propo-
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sition but we will not use it much later in the paper.

Proposition 2. Let G be a group. There exists an n-power extension H of G.

Proof. Let G = 〈S : R〉 be a presentation of G. Let A =
{

ag | g ∈ G
}

be a set indexed by

the elements of G. Form the group H = 〈S,A : R,P〉, where P =
{

an
gg−1 | g ∈ G

}
. Then

G naturally embeds into H and by construction, every element of G has an nth root in H.

Therefore H is an n-power extension of G.

The first family of groups we will consider is finite groups. Our first theorem gives us

an important bound on µn (G) for finite groups G.

Proposition 3. If G is finite and n ∈ N, then µn (G) < ∞.

Proof. See Section 3 of [Lyn].

We will see in a few pages that µn (C∞) < ∞, and therefore that the converse of Propo-

sition 3 is in general false. Another very important class of groups is the class of abelian

groups. The next proposition gives us a similar result to Proposition 3 for this class of

groups.

Proposition 4. If G is abelian and n ∈N, then there exists an abelian n-power extension of

G.

Proof. Since G is abelian, it is a Z-module (for an excellent introduction to module theory,

see [Dum]). Corollary 10.37 from [Dum] implies that therefore G is a submodule of some

injective Z-module H. Since Z is a Principal Ideal Domain, Proposition 10.36 (2) from

[Dum] shows that H is divisible, i.e. that the equation xr = h is solvable for all r ∈ Z,

h ∈ H. In particular the equation xn = g is solvable for all g ∈ G ⊂ H. Therefore H is an

n-power extension of G.
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One technique that we will use several times throughtout this paper is essentially a

building up of necessary conditions for H to be an n-power extension of G. The first

requirement is that we need an injective homomorphism f : G→ H. This will often give

severe restrictions on the structure of H. Once we have constrained H in this way, we can

determine what conditions need to be met in order for us to have f : G ↪→n H. As was

shown above, this is always possible. However, as we shall see especially in the section on

semidirect products that if we add more conditions besides these on the structure of H, we

may find that there is no possible n-power extension satisfying these conditions.

Next we give a potentially useful proposition that can sometimes allow us to prove that

a particular group H is not a minimal n-power extension of G.

Proposition 5. If f : G ↪→n H, N / H, and N ∩ f (G) = {1}, then f : G ↪→n H/N, where

f (g) = f (g)N.

Proof. We must show that f is a monomorphism and for every g ∈ G, ∃xN ∈ H/N such

that (xN)n = f (g) = gN. The second condition is clearly satisfied, since if f : G ↪→n H,

there exists x ∈ H such that xn = f (g). Clearly, then (xN)n = xnN = f (g)N = f (g). If

f (g) = 1N, then f (g)∈N. Since f (G)∩N = {1}, f (g) = 1, and since f is injective, g = 1.

So f is a monomorphism.

Note that this proposition implies that if the hypotheses are satisfied, then µn (G) ≤

[H/N : f (G)], and further, if [H : f (G)] is finite, then µn (G) < [H : f (G)].
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3 Cyclic Groups

3.1 Finite Cyclic Groups

Cyclic groups are in a way the simplest of all groups. They have only a single gen-

erator and a very simple presentation. What is also beneficial about cyclic groups is that

their structure can often be described using number-theoretic machinery, allowing for more

theorems and techniques to be applied to the problem of finding n-power extensions. In

later sections we will often consider cyclic groups as special cases for more development.

Cyclic groups have a very simple structure, and because of this it is only necessary to look

at cyclic extensions of cyclic groups when attempting to find n-power extensions.

Proposition 6. Suppose G is a cyclic group with generator a and f : G ↪→n H. Then there

exists a cyclic group C ≤ H such that f : G ↪→n C. The group C is finite if and only if G is

finite.

Proof. Choose x∈H such that xn = f (a). Let C = 〈x〉. Then C is a cyclic group. f (G)≤C,

since for any k ∈ Z, f (ak) = (xn)k = xnk ∈C. Further, Cm is n-divisible in C: Let ak ∈Cm,

then xk ∈ C and (xk)n = (xn)k = ak. If G is finite, say of order m, then xnm = f (a)m =

f (am) = f (1) = 1. So |C| = | 〈x〉 | ≤ mn, i.e. C is finite. If G is infinite, then since G

embeds into C, we know C is infinite.

So we have determined that we may restrict our attention entirely to cylic groups for

the purposes of this discussion. We now turn to some number theoretic results that will

drive our later discussion. Our first proposition is an elementary result, proved here for

completeness’ sake. It will be the basis on which many of the theorems in this paper rest.

Proposition 7. Let G = Cma. The equation xn = ak is solvable in G if and only if (m,n) | k.

Proof. Suppose ∃x∈G such that xn = ak. Then x = aq for some q∈Z, so ak = (aq)n = aqn.

This implies that k ≡ qn(mod m). So k = qn+ pm for some p ∈ Z. Since (m,n) | m,n, we
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conclude (m,n) | k.

Now suppose (m,n) | k. Let p,q ∈ Z such that pm+qn = (m,n), and set k′ = k
(m,n) . Let

x = ak′q. Then

xn = ak′qn = ak′((m,n)−pm) = ak′(m,n)a−k′pm = ak
(

a−k′p
)m

= ak.

So the equation xn = ak is solvable.

The following corollary to this proposition gives us our first concrete result regarding

µn (G), for a family of groups G.

Corollary 8. Let G = Cma. Then Ωn(G) = G if and only if (m,n) = 1. In particular, if

(m,n) = 1, µn (Cm) = 1.

Proof. Suppose Ωn(G) = G. Then the equation xn = a = a1 is solvable. By Proposition 7,

(m,n) | 1, i.e. (m,n) = 1.

Suppose (m,n) = 1. Then the equation xn = a1 = a is solvable since (m,n) = 1 | 1.

Let b ∈ G such that bn = a. Let ak ∈ G. Then
(
bk)n = (bn)k = ak. Therefore the equation

xn = ak is solvable for all k, i.e. Ωn(G) = G.

Now we will start thinking in terms of mapping a cyclic group into another one. A

homomorphism from one cyclic group to another is determined entirely by where the gen-

erator of the first group is sent. If we want the homomorphism to be injective, we must

ensure that there are no “repeats,” i.e. no pairs of elements in the base group that map to

the same element in the target group. The next proposition gives the conditions for this

precisely.

Proposition 9. If φ : Cma→Chb is given by φ(a) = bk, then φ is a monomorphism if and

only if m · (h,k) | h | mk.
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Proof. Suppose φ is a monomomorphism. We will show that m · (h,k) | h | mk.

First, note that

bmk = (bk)m = (φ(a))m = φ(am) = φ(1) = 1,

so h = ord(b) | mk (where ord(b) denotes the order of b, i.e. the smallest α ∈ N such that

bα = 1).

Since φ is injective, we know kerφ = 1, i.e. if φ(aq) = bkq = 1, aq = 1. In other

words, if h | kq, then m | q. Let q = h
(h,k) . Then h | h · k

(h,k) = kq. Therefore m | q, and so

m · (h,k) | q · (h,k) = h.

Therefore m · (h,k) | h | mk

Now suppose m ·(h,k) | h |mk. Let φ : Cma→Chb be defined by φ(aq) = bkq. To see that

this map is well-defined, suppose aq1 = aq2 ∈ G. Then q1 ≡ q2(mod m), so m | (q1− q2),

implying

h | mk | k(q1−q2) = (kq1− kq2).

So kq1 ≡ kq2(mod h). Therefore

φ(aq1) = bkq1 = bkq2 = φ(aq2).

So φ is well-defined.

If aq1,aq2 ∈ G, then

φ(aq1aq2) = φ(aq1+q2) = bk(q1+q2) = bkq1bkq2 = φ(aq1)φ(aq2),

so φ is a homomorphism.

Suppose φ(aq) = bkq = 1. Then h | kq, which implies h
(h,k) |

k
(h,k)q. Since h

(h,k) is coprime

to k
(h,k) , this shows that h

(h,k) | q. However, since m · (h,k) | h, we know m | h
(h,k) . Therefore
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m | q, that is, aq = 1. So φ is injective.

Therefore G∼= φ(G)≤ H.

This proposition completely answers the question of whether a homomorphism from

one cyclic group to another is injective. However, when studying n-power extensions of

cyclic groups, is it enough to only consider other cyclic groups as potential extensions?

The following proposition proves that this is indeed the case.

In a previous paragraph, it was noted that if (m,n) = 1, then µn (Cm) = 1. The first

inclination might be to suppose that µn (Cm) = (m,n) in all cases. However, this is not the

case: Consider the group C2, and suppose n = 4. Then (m,n) = 2. A cyclic extension of C2

of order 2 could only be C4. However, x4 = 1 for all x ∈C4. Therefore C4 cannot possibly

be a 4-power extension of C2. However, C8 is a 4-power extension of C2. Essentially,

the problem we ran into with C4 was that there was not enough “room” in C4 for the 4th

powers to take on the structure they needed. Upon reflection, it is logical to suppose that

the minimal 8-power extension of C2 would be C16, the minimal 16-power extension would

be C32, and so forth. What about a 3-power extension of C2? Since x3 = x for all x ∈C2, we

see that C2 is its own 3-power extension, i.e. µ3 (C2) = 1. In fact we already knew this since

(2,3) = 1. But what about a 6-power extension? Notice that any 6-power extension of a

group is a 2-power extension, so we know µ6 (C2) 6= 1. However, it can easily be verified

that C4 is a 6-power extension of C2. So it would seem that the only part of n that has

an effect on µn (Cm) is that part that is not coprime to n. The follwing results make these

intuitions precise.

Definition 3. For a prime p∈N and positive integer n∈N, let vp(n) be the p-adic valuation

of n, i.e. vp(n) = k, where n = pkm, m ∈ N, and p - m. Note then that

n = ∏
p prime

pvp(n).
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Definition 4. Let K : N×N→ N be given by

K(m,n) = ∏
p prime
p|m

pvp(n)

Theorem 10. Consider Cma. Then the smallest group H such that Cma is n-divisible in H is

the cyclic group of order m ·K(m,n) with generator b under the inclusion map a 7→ bK(m,n).

In other words, µn (Cm) = K(m,n).

Proof. By Proposition 6, the smallest group H such that Cma is n-divisible in H must be

cyclic, i.e. H =Chb for some h∈N∪{∞} and generator b. Furthermore, the inclusion map

from Cma to H will be given by a 7→ bk for some k ∈ N. If h is finite, then by Proposition

9, we must have m · (h,k) | h | mk. Also, in order for Cm to be n-divisible in H, we must

have (h,n) | k by Proposition 7. So we wish to find the smallest h such that we can find a

k that satisfies these conditions. By rewriting these conditions using the p-adic valuation

notation above, the conditions m · (h,k) | h | mk and (h,n) | k become

∀p prime, vp(m)+min
{

vp(h),vp(k)
}
≤ vp(h)≤ vp(m)+ vp(k)

and min
{

vp(h),vp(n)
}
≤ vp(k).

Note that if vp(m) = 0, setting vp(h) = vp(k) = 0 satisfies both inequalities. If vp(m) >

0, then vp(m) + vp(h) > vp(h). Therefore the first condition implies that we must have

vp(k) < vp(h) and vp(m) + vp(k) ≤ vp(h) ≤ vp(m) + vp(k), i.e. vp(h) = vp(m) + vp(k).

This also implies that vp(h) > vp(k), so the second condition requires that vp(n) ≤ vp(k).

Therefore the smallest possible value of vp(k) is vp(n).
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In summary, we have that

vp(k) =


0 vp(m) = 0

vp(n) vp(m) > 0
,

and so

k = ∏
p prime

pvp(k) = ∏
p prime
p|m

pvp(n) = K(m,n).

Similarly, we have

vp(h) =


0 vp(m) = 0

vp(m)+ vp(n) vp(m) > 0
,

yielding

h = ∏
p prime

pvp(h) = ∏
p prime
p|m

pvp(m)+vp(n) = ∏
p prime
p|m

pvp(m) · ∏
p prime
p|m

pvp(n) = m ·K(m,n).

This completes the proof.

This theorem gives a complete description of µn (Cm) for all m,n ∈ N.

3.2 Infinite Cyclic Groups

The case of infinite cyclic groups is somewhat simpler. Since an infinite group can only

embed into an infinite group, the natural group to embed C∞ into is C∞ itself. This turns out

to be the case, and the natural monomorphsim C∞a→C∞b given by a 7→ bn turns out to be

the best possible mapping in terms of minimizing the index of the image of the map.

Proposition 11. µn (C∞) = n.

Proof. By Proposition 6, the smallest n-power extension of C∞a is the infinite cylic group

C∞b. Suppose f : C∞a ↪→n C∞b. Notice that Ωn(C∞b) =
{

bkn | k ∈ Z
}

. Then since
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f (C∞a)⊆Ωn(C∞b), we have that [C∞b : f (C∞a)]≥ [C∞b : Ωn(C∞b)] = n. However, if it is

the case that f (a) = bn, then f (C∞a) = Ωn(C∞b). Therefore µn (C∞) = n.

We now have our final piece of information regarding cyclic groups. In the next section

we will use this proposition to give bounds on µn (G) for all finitely generated Abelian

groups G and positive integers n.
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4 Direct Products

If G is a direct or semidirect product, there is a natural type of embedding that respects

the factors of the products.

Definition 5. If G is a direct or semidirect product with factors A and B, and H is a direct

or semidirect product with factors J and K, then H is called a factorable n-power extension

of G if there exists h : G ↪→n H such that h(A)⊆ J and h(B)⊆ K. In the case that G and H

are semidirect products, we require that the normal factor maps into the normal factor.

Notice that in this case h can be “factored” into two functions f : A→ J and g : B→ K

such that f = h|A and g = h|B. In the case of direct products, the existence of a factorable

n-embedding is easily shown. However, in the case of semidirect products, the question

is not as easily answered. We are sometimes interested only in [H : h(G)] for factorable

n-power extensions H of G.

Definition 6. If G is a direct or semidirect product, then let

µF
n (G) = min

f ,H
{[H : f (G)] | f : G ↪→n H and f is factorable} .

Note that µF
n (G) is only defined for groups G that have factorable n-power extensions.

Our first Lemma involving this new function is obvious:

Lemma 12. If G has a factorable n-power extension, then µF
n (G)≥ µn (G).

The direct product is a tool by which many groups can be described. In particular,

finitely generated Abelian groups can be expressed as direct products of cyclic groups,

which we examined in detail in the last section.

Our first theorems tell us that we may obtain bounds on µn (G×H) if we know µn (G)

and µn (H).
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Proposition 13. If f : A ↪→n H and g : B ↪→n J, then ( f ,g) : A×B ↪→n H× J.

Proof. Let h = ( f ,g) : A×B→ H × J. Then since f and g are monomorphisms, h is a

monomorphism. Further, let (a,b) ∈ A×B. Then by assumption, ∃x ∈ H, y ∈ J such that

xn = f (a) and yn = g(b). So

h(a,b) = ( f (a),g(b)) = (xn,yn) = (x,y)n.

Therefore h : A×B ↪→n H× J.

Corollary 14. Any direct product has a factorable n-power extension.

Proof. Let G = A×B be a direct product. By Proposition 2, A and B have n-power ex-

tensions H and J with n-embeddings f : A ↪→n H and g : B ↪→n J. By Proposition 13,

( f ,g) : A×B = G ↪→n H×J. By construction, ( f ,g) is a factorable n-embedding of G

The following corollary gives an upper bound on µn (A×B) by calculating µF
n (A×B),

assuming we know µn (A) and µn (B).

Corollary 15. µF
n (A×B) = µn (A) ·µn (B).

Proof. Suppose h : A×B ↪→n H× J is a factorable n-embedding for some groups H and

J such that [H × J : h(A×B)] = µF
n (A×B). Then h = ( f ,g) for some monomorphisms

f : A→ H and g : B→ J. Let a ∈ A, and choose (h, j) ∈ H× J such that (h, j)n = h(a,1).

Then (hn, jn) = ( f (a),1), so hn = f (a). Therefore f : A ↪→n H. Similarly, g : B ↪→n J.

Notice that

[H× J : h(A×B)] = [H× J : f (A)×g(B)] = [H : f (A)] · [J : g(B)]≥ µn (A) ·µn (B) .

However, if we choose H ′,J′ and f ′,g′ so that f ′ : A ↪→n H ′ and g′ : B ↪→n J and further that

[H ′ : f ′(A)] = µn (A) and [J′ : g′(B)] = µn (B), then h′ = ( f ′,g′) is an n-embedding of A×B
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into H ′× J′ and

[H ′× J′ : h′(A×B)] = [H ′ : f ′(A)] · [J′ : g′(B)] = µn (A) ·µn (B) .

Therefore µF
n (A×B) = µn (A) ·µn (B).

We can find a lower bound on µn (A×B) by noting that any n-embedding of A×B into

H is also an n-embedding of A and B individually into H.

Proposition 16. µn (A×B)≥max
(

µn(A)
|B| , µn(B)

|A|

)
.

Proof. If µn (A×B) is infinite, the statement holds. So suppose f : A×B ↪→n H and

[H : f (A×B)] = µn (A×B) < ∞.

Further suppose that B has finite order. Then f |A is an n-embedding of A into H. Therefore,

since Im( fA) = f (A×{1}), we must have that [H : A×{1}] ≥ µn (A). However, we must

also have that [H : f (A×B)] = [H : f (A×{1})]/|B|, since for every coset of f (A×B) in H,

there will be |B| cosets of f (A×{1}) in H, namely those cosets which differ by an element

of f (B). Therefore

µn (A×B) = [H : f (A×B)] =
[H : f (A×1)]

|B|
≥ µn (A)
|B|

.

A symmetric argument holds and shows that µn (A×B)≥ µn(B)
|A| if A is finite.

If both A and B have infinite order, then the statement of the proposition simply says

that µn (A×B)≥ 0, which we already know since µn (A×B)≥ 1 by Lemma 1.

We end this section with an application of our theorems to the case of finitely generated

Abelian groups.
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Corollary 17. Let G be a finitely generated Abelian group, and let G = Cr
∞×Cp

α1
1
×·· ·×

Cpαm
m

be the elementary divisor decomposition of G. Then

µn (G)≤ nr ·
m

∏
i=1

p
vpi(n)
i ,

where vpi(n) is the pi-adic valuation of n, as per Definition 3.

Proof. The result follows from repeated applications of Corollary 15 as follows: Note that

µn (C∞×C∞) = µn (C∞) ·µn (C∞) = n2. Suppose that µn
(
Ck

∞

)
≤ nk for some k ∈ N. Then

µn

(
Ck+1

∞

)
= µn

(
Ck

∞×C∞

)
≤ µn

(
Ck

∞

)
·µn (C∞)≤ nk ·n = nk+1,

so by induction, µn (Cr
∞)≤ nr.

Similarly, µn

(
Cp

α1
1

)
= K(pα1

1 ,n) = p
vp1(n)
1 , and by induction we can show that

µn

(
Cp

α1
1
×·· ·×Cpαm

m

)
≤

m

∏
i=1

p
vpi(n)
i .

Combining these two results using Corollary 15 yields the desired result.
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5 Semidirect Products

We now generalize slightly and consider the problem of finding factorable n-power

extensions of a semidirect product. Suppose A and B are groups and let φ : B→ Aut(A)

be a homomorphism. We wish to know under what conditions we can find groups H and

J, functions f : A→ H, g : B→ J and a homomorphsim ψ : J→ Aut(H) such that ( f ,g) :

Aoφ B ↪→n H oψ J. We begin by seeing whether the function ( f ,g) can even be constructed

so that it is a monomorphism. Note that this immeditately requires that f and g be each

monomorphic.

Proposition 18. Suppose A, B, H, and J are groups, f : A→H and g : B→ J are monomor-

phisms, and φ : B→ Aut(A) and ψ : J → Aut(H) are homomorphisms. Then ( f ,g) :

A oφ B→ H oψ J is a monomorphism if and only if for all a ∈ A, b ∈ B, ψg(b)
(

f (a)
)

=

f
(
φb(a)

)
.

Proof. Let h = ( f ,g) : A oφ B→ H oψ J.

Suppose h is a monomorphism. Then for all a ∈ A, b ∈ B,

h
(
(1,b)(a,1)

)
= h
(
φb(a),b

)
=
(

f
(
φb(a)

)
,g(b)

)

and

h(1,b)h(a,1) =
(
1,g(b)

)(
f (a),1

)
=
(

ψg(b)
(

f (a)
)
,g(b)

)
.

Since h is a homomorphism, these two pairs are equal, and so we must have that

ψg(b)
(

f (a)
)

= f
(
φb(a)

)
.

Now suppose that for every a ∈ A, b ∈ B, we have ψg(b)
(

f (a)
)

= f
(
φb(a)

)
. Suppose
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(a,b),(c,d) ∈ A oφ B. Then

h
(
(a,b)(c,d)

)
= h

(
aφb(c),bd

)
=

(
f
(
aφb(c)

)
,g(bd)

)
=

(
f (a) f

(
φb(c)

)
,g(b)g(d)

)
=

(
f (a)ψg(b)

(
f (c)

)
,g(b)g(d)

)
=

(
f (a),g(b)

)(
f (c),g(d)

)
= h(a,b)h(c,d).

So h is a homomorphism. Since f and g are injective, h is injective. So h is a monomor-

phism.

We now begin to discuss the possibility of ( f ,g) : A oφ B ↪→n H oψ J. The primary

problem that arises when dealing with semidirect products as opposed to direct products

is that raising a pair (x,y) ∈ H oψ J to the nth power does not behave nicely in the first

coordinate. Even if it happens to be the case that f : A ↪→n H, this is usually not sufficient

(or even necessary) for H oψ J to be an n-power extension of Aoφ B. However, the fact that

we are raising (x,y) to a power and not, say, multiplying it by various other pairs, allows us

to describe our results in a somewhat simpler fashion. The next notation is a convenience

that will help to make the following computations more comprehendable. It describes the

action of multiplication in a semidirect product in a compact way.

Definition 7. For a given semidirect product H oψ J, h,x ∈ H and j ∈ J, let

λh, j ( x ) = h ψ j ( x ).

Then notice that for (h, j),(h′, j′) ∈ H oψ J, (h, j)(h′, j′) =
(
λh, j(h′), j j′

)
.
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Further, for j ∈ J, h ∈ H and n ∈ N, let

Λn(h, j) = λ
n
h, j(1) = hψ j

(
hψ j
(
· · ·hψ j(h)︸ ︷︷ ︸

n h′s

· · ·
))

.

Note that λh, j (Λn(h, j)) = Λn+1(h, j).

Lemma 19. If (x,y) ∈ H oψ J, then (x,y)n = (Λn(x,y),yn).

Proof. We prove by induction on n.

Base Case: Suppose n = 1. Then since

Λ1(x,y) = λx,y(1) = xψy(1) = x1 = x

and y1 = y, we have (x,y)1 = (x,y) =
(
Λn(x,y),y1).

Inductive step: Suppose (x,y)k =
(
Λk(x,y),yk) for some k ∈ N. Then

(x,y)k+1 = (x,y)(x,y)k

= (x,y)
(

Λk(x,y),yk
)

=
(

λx,y
(
Λk(x,y)

)
,yk+1

)
=

(
Λk+1(x,y),yk+1

)
.

So the inductive step is proved.

Corollary 20. (h, j)n = (x,y) if and only if jn = y and Λn(h, j) = x.

The problem of finding a factorable n-power extensions of A oφ B has therefore been

restated as finding H, J, f : A→ H, g : B→ J, and ψ such that for all (a,b) ∈ A oφ B, we

can find (h, j) ∈ H oψ J such that f (a) = Λn(h, j) and g(b) = jn. Note that this requires

that g : B ↪→n J. This problem is nontrivial in general, and we will find that even in the

simplest case, when A and B are both cyclic groups, such an extension may not exist.
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6 Semidirect Products of Finite Cyclic Groups

We now restrict our attention to the case where we begin with a group G =Cm1aoφCm2b

and with to n-embed it into a group H = C`1c oψ C`2d. The cyclic nature of the groups

involved will allow us to express the conditions for n-embedding in number-theoretic terms.

We wish to construct functions f : Cm1 → C`1 and g : Cm2 → C`2 such that f and g

are monomorphisms. Let r ∈ {1, . . . , `1−1} and s ∈ {1 . . . , `2−2} so that f (a) = cr and

g(b) = ds. By Proposition 9, we must have that m1 ·(`1,r) | `1 |m1 f and m2 ·(`2,s) | `2 |m2s.

We need to construct the homomorphism ψ :C`2→ Aut(C`1). Note that ψ is determined

entirely by ψd(c): Suppose φd(c) = ce for some e ∈ 1,2 . . . , `1−1. If j,k ∈ Z, then

ψd(c j) = (ψd(c))
j = (ce) j = c je

ψdk(c) = ψd · · ·ψdψdψd(c) = ψd · · ·ψdψd (ce) = ψd · · ·ψd

(
ce2
)

= · · ·= cek
,

and so

ψdk(c j) = (ψdk(c)) j =
(

cek
) j

= c jek
.

So in order to determine ψ we need to choose e. In order for the funtion c→ ce to be an

automorphism, we must have that (e, `1) = 1. In order for the function ψ to be a homomor-

phism, we need ψd`2 = idC`1
. Therefore we need

ce`2 = ψd`2 (c) = idC`1
(c) = c,

that is, we need e`2 ≡ 1(mod `1).

Similarly, if we let h ∈ {1,2 . . . ,m1−1} so that φb(a) = ah, through an identical com-

putation we find that φbk(a j) = a jhk
, (h,m1) = 1, and hm2 ≡ 1(mod m1).

Proposition 18 tells us that we need ψg(y)
(

f (x)
)

= f
(
φy(x)

)
for all x ∈ Cm1 , y ∈ Cm2 .

Because all our functions are homomorphisms and our groups are cyclic, we need only
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confirm this in the case of generators, i.e. we need ψg(b)
(

f (a)
)

= f
(
φb(a)

)
. But since we

have formulae for these functions, we can be more explicit:

ψg(b)
(

f (a)
)

= ψds (cr) = cres

f
(
φb(a)

)
= f

(
ah
)

= crh.

So this condition reduces to the congruence rh≡ res(mod `1).

Now we consider the problem of n-divisibility. Let (a j,bk) ∈Cm1 oφ Cm2 . Then

( f ,g)(a j,bk) = (cr j,dsk).

By Corollary 20, this is equal to (x,y)n for some (x,y) ∈C`1 oψ C`2 if and only if yn = dsk

and Λn(x,y) = cr j. The first condition is clearly satisfied if and only if the equation yn = ds

is solvable. By Proposition 7, this occurs exactly when (`2,n) | s.

Assuming we have such a condition, i.e. yn = dks is solvable for any k ∈ Z, let us

turn to solving the equation Λn(x,y) = cr j. We must have that y = dq for some q ∈

{0,1, . . . , `2−1}. Therefore for any z ∈C`1 ,

λx,y(z) = xψy(z) = xψdq(z) = xzeq
.

Hence,

Λ1(x,y) = λx,y(1) = x,

Λ2(x,y) = λ(x,y)(x) = xxeq
= xeq+1,

Λ3(x,y) = λ(x,y)
(

xeq+1
)

= xxe2q+eq
= xe2q+eq+1,

...
...

...

Λn(x,y) = xe(n−1)q+e(n−2)q+···eq+1.
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For the sake of notation, let

Qn(z) =
n−1

∑
i=0

zi =


n; z = 1

(zn−1)/(z−1); z 6= 1
.

Then Λn(x,y) = xQn(eq). We wish for this expression to be equal to cr j. Since x∈C`1 , x = ct

for some t ∈{0,1 . . . , `1−1}. So we want to find t such that ctQn(eq) = cr j, that is, tQn(eq)≡

r j(mod `1). This is solvable exactly when (Qn(eq), `1) | r j. So we want (Qn(eq), `1) | r j

for all j ∈ {0,1, . . . ,m1}. Clearly this is equivalent to simply (Qn(eq), `1) | r.

Hence, what we need is for every k ∈ {0,1, . . . ,m2−1}, there to exist some

q ∈ {0,1, . . . , `2−1} with qn≡ sk(mod `2) (so that (dq)n = dsk), such that (Qn(eq), `1) | r

(so that for some t, Λn(ct ,dq) = cr j).

All the previous discussion leads us to the following theorem:

Theorem 21. Suppose we are given positive integers m1,m2,h and n with (h,m1) = 1 and

hm2 ≡ 1(mod m1) and a homomorphism φ : Cm2 → Aut(Cm1) given by φb(a) = ah. If we

choose positive integers `1, `2, construct functions f : Cm1a→ C`1c and g : Cm2b→ C`2d

by f (a) = cr and g(b) = ds, where r and s are positive integers, and construct a function

ψ : C`2 → Aut(C`1) by ψd(c) = ce, then ( f ,g) : Cm1 oφ Cm2 ↪→n C`1 oψ C`2 if and only if

1. m1 · (`1,r) | `1 | m1r

2. m2 · (`2,s) | `2 | m2s

3. (e, `1) = 1

4. e`2 ≡ 1(mod `1)

5. rh≡ res(mod `1)

6. (`2,n) | s
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7. For all k ∈ {0,1, . . . ,m2−1}, there exists q ∈ {0,1, . . . , `2−1} such that

qn≡ sk(mod `2) and (Qn(eq), `1) | r.

Proof. The only if part of the theorem comes directly from the argument above.

Now suppose that we are given positive integers m1, m2, h, and n with (h,m1) = 1 and

hm2 ≡ 1(mod m1) and a homomorphism φ : Cm2b→ Aut(Cm1a) given by φb(a) = ah, and

that we can find `1, `2,e,r,s satisfying conditions 1-7. If f : Cm1a→C`1c and g : Cm2b→

C`2d are given by f (a) = cr and g(b) = ds and ψ : C`2d→ Aut(C`2c) is given by ψd(c) =

ce, then ( f ,g) : Cm1 oφ Cm2 ↪→n C`1 oψ C`2: Conditions 1 and 2 ensure that f and g are

monomorphisms. That, combined with condition 5, shows that ( f ,g) is a monomorphism.

Condition 3 implies that ψ does actually map into Aut(C`1), while condition 4 shows ψ is

a homomorphism. Condition 6 shows that the equation (dq)n = g(bk) = dsk can always be

solved in C`2 , while condition 7 says that for any a j ∈Cm1 , bk ∈Cm2 , we can always find

some q and t such that (dq)n = g(bk) and ctQn(eq) = f (a j) = a jr. But this exactly means

that (ct ,dq)n =
(

f (a j),g(bk)
)
. So ( f ,g) : Cm1 oφ Cm2 ↪→n C`1 oψ C`2 .

The conditions in Theorem 21 can be simplified somewhat to allow for easier compu-

tation. The first two conditions imply that m1 | `1 and m2 | `2. Choose µ1,µ2 such that

`1 = m1µ1 and `2 = m2µ2. Then the first condtion becomes m1 · (m1µ1,r) | m1µ1 | m1r,

which can now be simplified to (m1µ1,r) | µ1 | r. Since µ1 | r, let r = µ1η1. Then the

second division in the condition is clear, so we are left with the first division, which now

says (m1µ1,µ1η1) | µ1. But since µ1 | (m1µ1,µ1η1), we have (m1µ1,µ1η1) = µ1. This is

true exacly when (m1,η1) = 1. Similarly, if we let s = µ2η2. we can reduce the second

condition to (m2,η2) = 1.

The third condition can now be rewritten as (e,m1µ1) = 1. This is clearly equivalent to

the two separate conditions (e,m1) = 1 and (e,µ1) = 1.

The fourth condition does not simplify: we merely rewrite it as em2µ2 ≡ 1(mod m1µ1).

The fifth condition becomes µ1η1h ≡ µ1η1eµ2η2(mod m1µ1). Reducing the µ1 yields
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η1h ≡ η1eµ2η2(mod m1). From the reduced first condition we know (m1,η1) = 1, so can-

celling the η1s gives h≡ eµ2η2(mod m1).

The sixth condition we rewrite as (m2µ2,n) | µ2η2.

The seventh condition we rewrite as follows: For all k ∈ {0,1, . . . ,m2−1}, there exists

q ∈ {0,1, . . . ,m2µ2−1} such that qn≡ µ2η2k(mod m2µ2) and (Qn(eq),m1µ1) | µ1η1.

Notice that because of the way that we have defined µ1 and µ2, if we can find positive

integers satisfying these conditions, then we find a factorable n-power extension of order

µ1 ·µ2. Summarizing, we have

Corollary 22. A group Cm1aoφ Cm2b, with φb(a) = ah, has a factorable n-power extension

if and only if there exist positive integers µ1,µ2,η1η2,e such that

1. (m1,η1) = 1

2. (m2,η2) = 1

3. (e,m1) = 1

4. (e,µ1) = 1

5. em2µ2 ≡ 1(mod m1µ1)

6. h≡ eµ2η2(mod m1)

7. (m2µ2,n) | µ2η2

8. For all k ∈ {0,1, . . . ,m2−1}, there exists q ∈ {0,1, . . . ,m2µ2−1} such that qn ≡

µ2η2k(mod m2µ2) and (Qn(eq),m1µ1) | µ1η1.

These conditions can be used to find factorable n-power extensions of this type of

semidirect product or to prove that none exist.
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6.1 Eliminating Possibilities

Suppose we wish show that for a particular 4-tuple (m1,m2,h,n) a factorable n-power

extension of Cm1a oφ Cm2b, with φb(a) = ah, does not exist. Note that then we need h 6= 1,

for if h = 1, then we have a direct product, and as was shown in the previous section, direct

products always have factorable n-power extensions.

Consider the most commonly encountered semidirect product in elementary abstract

algebra: the dihedral group Dm on m vertices. Recall that Dm∼=CmaoφC2b, where φb(a) =

a−1. For example, consider D4 = C4aoφ C2b, and suppose n = 2. There exists a factorable

n-extension of Dm if and only if we can find numbers µ1,µ2,η1,η2,e such that the above 8

conditions hold, with (m1,m2,h,n) = (4,2,−1,2).

From condition 2 we have that (2,η2) = 1, implying η2 is odd. However, condition 7

implies that (2µ2,2) = 2 | µ2η2. Then we must have 2 | µ2. So then condition 6 gives that

−1≡ eµ2η2 =
(

e
µ2η2

2

)2
(mod 4).

So we have that −1 is a square modulo 4, a contradiction. Therefore there exist no

µ1,µ2,η1,η2,e making conditions 1-8 hold. Therefore D4 has no factorable n-power exten-

sion.

This argument is generalized to all semidirect products in the following proposition.

Proposition 23. Let k = (m2,n). If there exists a factorable n-power extension of Cm1a oφ

Cm2b with φb(a) = ah, then h has a kth root modulo m1.

Proof. Note that k = (m2,n) | (m2µ2,n) | µ2η2 by condition 7, so by condition 6, h ≡(
e

µ2η2
(m2,n)

)(m2,n)

(mod m1). So h has a kth root modulo m1, namely e
µ2η2
(m2,n) .
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6.2 Finding Factorable n-power Extensions

The fact that Theorem 21 is an if and only if statement allows us to use its conditions to

find factorable n-power extensions of semidirect products. Furthermore, the simple nature

of the conditions allows them to be programmed into a computer. The relationship between

the simplified variables µ1, µ2, η1, η2, e and the “natural” variables `1, `2, r, s, e are given

here for reference (note that m1 and m2 are as before):

• `1 = m1µ1

• `2 = m2µ2

• r = µ1η1

• s = µ2η2

We note some relationships between the elements µ1,µ2,η1,η2,e that can assist when writ-

ing an algorithm for finding factorable n-power extensions. Notice that since br = bµ1η1is

the image of the generator of Cm1a in C`1c under the function f , we can require that

µ1η1 < `1 = m1µ1. Therefore 1 ≤ η1 < m1. Similarly, 1 ≤ η2 < m2. Futhermore, since

ψd(c) = ce ∈ C`1 , we can require that 1 ≤ e < `1 = m1µ1. So for a fixed µ1,µ2, there are

only a finite number of possible triples (η1,η2,e) that might give rise to distinct extensions

of Cm1 oφ Cm2 . To be precise, given µ1,µ2, there are at most (m1− 1)(m2− 1)(m1µ1− 1)

triples to check. Note that this number does not depend on µ2.

Furthermore, note that the order of the extension represented by the 5-tuple

(µ1,µ2,η1,η2,e) is µ1µ2. This now gives us a way of algorithmically finding

µF
n
(
Cm1 oφ Cm2

)
, assuming it exists. First, find one 5-tuple (µ∗1,µ

∗
2,η
∗
1,η
∗
2,e
∗) satisfying

the conditions of Corollary 22. Now there are a finite number of pairs (µ1,µ2) such that

µ1µ2 < µ∗1µ∗2. If any of these pairs (µ1,µ2) have a triple (η2,η2,e) such that the five variable

together satisfy the conditions in Theorem 22, then they correspond to an n-extension of
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Cm1 oφ Cm2 of smaller oder. We can repeat the process until we find a pair (µ1,µ2) that

is minimal. Summarizing, we give the outline of an algorithm that could be used by a

computer to find these extensions. At this time, we do not have a convenient limit on the

sizes of µ1 and µ2 as a function of m1, m2, h, and n. However, it seems likely that one exists.

The Cyclic Semidirect n-power Extension Algorithm

1. Begin with positive integers m1, m2, h, and n. Choose a limit M for the value of µ1µ2.

Set µ1 = µ2 = 1 and M∗ = M.

2. Check the (m1− 1)(m2− 1)(m1µ1− 1) triples (η1,η2,e) with 1 ≤ η1 < m1, 1 ≤

η2 < m2, and 1 ≤ e < m1µ1 to see if any of the 5-tuples (µ1,µ2,η1,η2,e) satisfy the

conditions of Theorem 22. If so, set M∗ = µ1µ2.

3. Check the next potential value of µ1µ2 to see what to check next.

If (µ1 +1)µ2 < M∗, increase µ1 by 1 and go to step 1

Otherwise, if µ2 +1 < M∗, set µ1 = 1, increase µ2 by 1, and go to step 1

If µ2 +1≥M∗, we’re done. We’ve either found a minimal n-power extension of

Cm1 oφ Cm2 or we’ve determined that no factorable extension with order less than M

exists.

6.3 The Dihedral Groups

We now attempt to give an complete a description as we can of µF
n (Dm) for Dm the

dihedral group of order 2m. Note that Dm = Cma oφ C2b, where φ(b) = a−1. So we wish

to know for what values of m and n can a 5-tuple (µ1,µ2,η1,η2,e) be found such that these

values satisfy the eight conditions with (m1,m2,h,n) = (m,2,−1,n). Substituting these

values into the eight conditions of Theorem 22, we have

1. (m,η1) = 1
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2. (2,η2) = 1

3. (e,m) = 1

4. (e,µ1) = 1

5. e2µ2 ≡ 1(mod mµ1)

6. −1≡ eµ2η2(mod m)

7. (2µ2,n) | µ2η2

8. For all k ∈ {0,1}, there exists q ∈ {0,1, . . . ,2µ2−1} such that qn≡ µ2η2k(mod 2µ2)

and (Qn(eq),mµ1) | µ1η1.

Further, notice that from the discussion above we have the conditions

• 1≤ η1 < m

• 1≤ η2 < 2

• 1≤ e < mµ1

The second condition above implies that η2 = 1, allowing us to eliminate condition 2 (since

it is automatically satisfied) and simplify conditions 6, 7, and 8. The simplified conditions

are now

• I) (m,η1) = 1

• II) (e,m) = 1

• III) (e,µ1) = 1

• IV) e2µ2 ≡ 1(mod mµ1)

• V) −1≡ eµ2(mod m)
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• VI) (2µ2,n) | µ2

• VII) For all k ∈ {0,1}, there exists q ∈ {0,1, . . . ,2µ2−1} such that

qn≡ µ2k(mod 2µ2) and (Qn(eq),mµ1) | µ1η1.

Proposition 24. If n is odd, then a factorable n-power extension of Dm exists and µF
n (Dm)≤

K(m,n).

Proof. Let µ1 = K(m,n), µ2 = η1 = η2 = 1 and let e = mµ1−1 = m ·K(m,n)−1. Then con-

dition I is satisfied automatically. Conditions II and V are satisfied since e ≡ −1(mod m).

Condition III is satisfied since e ≡ −1(mod µ1), and condition IV is satisfied since e ≡

−1(mod mµ1) and so e2 ≡ 1(mod mµ1). Condition VI is satisfied since n is odd and so

(2 ·K(m,n),n) = (K(m,n),n) |K(m,n). For condition VII, if k = 0, then setting q = 0 satis-

fies the first requirement of condition VII, and Qn(e0) = Qn(1) = n. Then (n,m ·K(m,n)) =

K(m,n) = µ1η1. So the second requirement is satisfied. If k = 1, then setting q = 1, we

require n≡ K(m,n)(mod 2), which is true since n and K(m,n) are both odd. Furthermore,

Qn(e1)≡ Qn(−1)≡ (−1)n−1 +(−1)n−2 + · · ·+(−1)+(−1)0

≡ 1−1+ · · ·−1+1≡ 1(mod mµ1).

So Qn(e1) is coprime to mµ1. Therefore all the conditions are satisfied, and so a factorable

n-power extension of Dm exists. Notice that the order of this extension is µ1µ2 = K(m,n) ·1,

and h : Dm ↪→n Dm·K(m,n), where h : Cmaoφ C2b→Cm·K(m,n)coψ C2d is given by h(a,1) =

(cK(m,n),1) and h(1,b) = (1,b).

Now we consider what happens when n is even. This is a more difficult situation to

handle because of the C2 factor in Dm. When n was odd, then raising anything in C2 to the

nth power didn’t do anything, and so every element of C2 was its own nth root. Such is not

the case when n is even, since anything in C2 raised to an even power is the identity.



31

Corollary 25. If n is even and−1 is not a square modulo m, then there exists no factorable

n-power extension of Dm. More generally, if n = 2k(2r−1) for some k,r ∈ N, then if −1

is not a 2kth power modulo m, then there exists no factorable n-power extension of Dm.

Proof. If we apply the 2-adic valuation to condition VI, we get that

min(v2(2)+ v2(µ2),v2(n))≤ v2(µ2).

But this implies that v2(µ2)≥ v2(n) = k. Let µ2 = 2kt. Then condition V implies that

−1≡ eµ2 =
(
et)2k

(mod m),

so −1 is a 2kth power modulo m. Hence, if −1 is not a 2kth power, then no such factorable

n-power extension exists.

Conjecture 26. If n is even, v2(n) = k > 0, and −1 is a 2kth power modulo m, then there

exists an n-power extension of Dm = Cm oφ C2.

The simplest way to accomplish a proof of Conjecture 26 is to show that under the hy-

potheses, we can find integers satisfying conditions I-VII. In particular, if a∈{1, . . . ,m−1}

such that (a,m) = 1 and a2k ≡ −1(mod m), then taking µ1 = K(m,n), µ2 = 2k, η1 = 1,

η2 = 1 and e = a looks promising as a possible n-power extension of Dm. Note that con-

ditions I, II, V, and VI are already satisfied by this choice of integers. If we can then show

that such an a always exists and that these integers satisfy conditions III, IV, and VII, we

will have proved the conjecture.
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7 Total Divisibility

A natural question that arises in the discussion of divisibility is that of total divisibility,

i.e. given a group G, what kinds of groups H can G be embedded into such that G is

divisible in H. We will begin by proving an analogue to Proposition 2. We will be using

some of the terminology from Definition 1 on page 2.

Proposition 27. Let G be a group. There exists a power extension H of G.

Proof. Let G = 〈S : R〉 be a presentation of G. Let A =
{

ag,n | g ∈ G, n ∈ N
}

be a set

indexed by the elements of G and the natural numbers. Form the group H = 〈S,A : R,P〉,

where P =
{

an
g,ng−1 | g ∈ G, n ∈ N

}
. Then G naturally embeds into H and by construc-

tion, every element of G has an nth root in H for all n ∈ N, namely ag,n. Therefore H is a

power extension of G.

In a manner unlike that of n-divisibility, most of the time a power extension of a group

G must be of infinite order. In particular, we show that if G is not already divisble, then it

must have infinite index in a power extension H.

Proposition 28. Suppose f : G→ H such that f : G ↪→n H for all n ∈ N. If G is not

divisible, then [H : f (G)] = ∞.

Proof. Choose g ∈ G and n ∈ N such that g does not have an nth root in G. Let k ∈ N.

Choose h ∈ H such that hn·k! = g. Consider the cosets hi f (G) for i = 1, . . . ,k. Suppose

hi f (G) = h j f (G) for some 1≤ j < i≤ k. Then hih− j = hi− j ∈ f (G). So there exists x ∈G

such that f (x) = hi− j. Let x̂ = xk!/(i− j). Then

f (x̂n) = f (x̂)n = f (x)n·k!/(i− j) =
(
hi− j)n·k!/(i− j)

= hn·k! = f (g).

Since f is injective, this implies x̂n = g, a contradiction to our assumption. Therefore the

cosets hi f (G) for i = 1, , . . . ,k are all distinct, so [H : f (G)] > k. Since k ∈N was arbitrary,



33

it follows that [H : f (G)] = ∞.

7.1 Cyclic Groups

In this section we will, for ease of computation, write our cyclic groups additively, as

Z instead of C∞ and Zm instead of Cm. We will write the generator of the group as 1 and

the identity as 0. In this case, divisibility becomes the problem of being able to solve the

equation n ·x = g for some element g of the cyclic group. Let us first consider a well-known

example: the infinite cyclic group Z. In order to solve the equation n · x = 1 ∈ Z, we need

essentially the element 1
n for all n. Thus, we find that

Proposition 29. A power extension of Z is the additive group Q.

Let us consider the problem of finding a power extension for a finite cyclic group Zm.

Definition 8. Let p1, p2, . . . , pk be primes. Let Z(p1, p2, . . . , pk) be the set of all fractions

whose denominators’ prime factors are contained in {p1, p2, . . . , pk} (including those frac-

tions with denominator 1). If m ∈ N, let Zm(p1, p2, . . . , pk) = Z(p1, p2, . . . , pk)/mZ be this

set of fractions modulo m.

Proposition 30. Let m ∈ N have prime factors p1, p2, . . . , pk. Then a power extension of

Zm is Zm(p1, . . . , pk).

Proof. Let H = Zm(p1, . . . , pk). Note that Z(p1, . . . , pm) is a subgroup of Q because adding

two fractions does not introduce any new prime factors to the denominator. Let f : Zm→H

be given by the composition of the inclusion map with the quotient map, i.e. f (x) = x+N

for all x ∈ Zm. First we must ensure that f is well-defined. This follows from the fact that

two elements in H are identified precisely when they differ by a multiple of m. The fact that

f is a homomorphism follows from the fact that the inclusion map and the quotient map are

both homomorphisms. Suppose f (x1) = f (x2). Then x1− x2 ∈ N, and so x1 ≡ x2(mod m).

But this means exactly that x1 = x2 in Zm, so f is injective.
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By Proposition 7, the group Zm is n-divisible for any n coprime to m. Let n ∈ N such

that (m,n) > 1. We wish to show that there exists z ∈ H such that n · z = f (1) = 1. Let

n = n′q, where n′ is coprime to m and q has only prime factors in the set {p1, p2, . . . , pk}.

Since (n′,m) = 1, we can find x ∈ Zm such that n′ · x = 1. By the construction of q, 1
q ∈ H.

Let z = x
q . Then

n · z = n′q · z = n′q · x
q

= n′ · x = 1.

So the equation n · z = 1 is solvable, hence Zm is divisible in H.

7.2 Direct Products

A natural result on direct products results from essentially applying Proposition 13 with

n arbitrary to get an analogous result.

Proposition 31. If f is a power embedding from A to G and g is a power embedding from

B to H, then ( f ,g) is a power embedding from A×B to G×H.

Proof. For any n ∈ N, f : A ↪→n G and g : B ↪→n H since f and g are power embedding.

Therefore, by Proposition 13, ( f ,g) : A×B ↪→n G×H. Since n was arbitrary, ( f ,g) is a

power embedding.

We finish off this section with a proposition that gives a power extension for any finitely

generated Abelian group.

Proposition 32. Let G be a finitely generated Abelian group, and let G = Zr×Zp
α1
1
×·· ·×

Zpαm
m

be the elementary divisor decomposition of G. Then the group H is a power extension

of G, where

H = Qr×Zp
α1
1

(p1)×·· ·×Zpαm
m

(pm).

Proof. We apply Propositions 29, 30, and 31 a total of r, m, and r + m− 1 times respec-

tively.
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8 Conjectures and Questions

We end this paper with a conjecture, which we suspect to be true but have not been able

to prove, and some questions which are related to the topics in this paper but we did not

address.

Conjecture 33. If A and B are groups, then µn (A×B) = µn (A) ·µn (B).

Question 1. We have shown ways of embedding a group G in a larger group H such that

every element of G has at least one nth root. Can we say how many nth roots there are? In

particular, which of these constructions allows for us to determine a unique nth root of any

element of G?

Question 2. Can our techniques be expanded and applied to matrix groups? What about

semidirect products of arbitrary (not necessarily finite) cyclic groups? How do they apply

to O(2) and SO(2), groups of linear transformations in the plane?

Question 3. The homotopy groups πm(X) of a topological space X are somewhat special

in that their elements are equivalence classes of functions into X , and so have a more

concrete realization than we normally encounter when working with groups. Given a space

X , is there a way to find another space Y and a map f : X → Y such that f induces an

n-embedding of πm(X) into πm(Y ), i.e. f∗ : πm(X) ↪→n πm(Y )?

Question 4. We have seen how the µn (G) function behaves with repect to direct and

semidirect products. How does it interact with free products G ∗H or amalgamated free

products G ∗N H? Can this be used to partially answer Question 3 for the fundamental

groups π1(X) via the Seifert-van Kampen Theorem?
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