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Setting: In this paper, all rings are reduced, essentially of finite type over a

field k. To be precise, R = W−1
(
k[x1, . . . , xn]

I

)
for some natural n, (radical)

ideal I ⊆ k[x1, . . . , xn], and multiplicatively closed subset W ⊆ k[x1, . . . , xn]

I
.

2 Characteristic p Preliminaries

In section 2, the field k has characteristic a prime p > 0 (that is, pk = 0), and
is perfect (that is, kp = k).

2.1 The Frobenius Endomorphism

In characteristic p > 0, the Frobenius map F : R → R given by F (r) = rp is
an injective ring homomorphism: we have F (rs) = (rs)p = rpsp = F (r)F (s);
F (x + y) = (x + y)p = xp + yp = F (x) + F (y) since p divides any binomial

coefficient

(
p
k

)
with 0 < k < p; and if F (x) = F (y), then xp = yp, so 0 =

xp − yp = (x− y)p implies x = y since R is reduced.
Since F is an injective endomorphism, R is naturally ring-isomorphic to its

image under F . In order to distinguish the domain from the target, we can
relabel the target space as R1/p, and consider it as the “ring of p-th roots of
elements of R.” We will most often treat R1/p as an R-module, with elements
labeled r1/p for r ∈ R and with the action of R on R1/p given by s · r1/p =
(spr)1/p. In fact, for any R-module M , we define Mp to be the module with

elements m1/p for m ∈M , addition given by m
1/p
1 +m

1/p
2 = (m1 +m2)1/p and

with action given by r ·m1/p = (rpm)1/p. In particular, if I = (a1, . . . , ad) ⊆ R
is an ideal, then I1/p = (a

1/p
1 , . . . , a

1/p
d ) ⊆ R1/p (note here that this is an ideal

in the ring R1/p).
The Frobenius map induces a functor F∗ on R-modules given by F∗(M) =

M1/p. In order to complete the functor definition we need to describe how F∗
acts on R-module homomorphisms. Let ϕ : M → N be a homomorphism of
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R-modules. We define ϕ1/p = F∗(ϕ) ∈ HomR(M1/p, N1/p) by ϕ1/p(m1/p) =
ϕ(m)1/p. We confirm that this is an R-module homomorphsim by showing it is
compatible with the action of R. Let r ∈ R, then

ϕ1/p(r ·m1/p) = ϕ1/p((rpm)1/p) = ϕ(rpm)1/p = (rpϕ(m))1/p = r · ϕ(m)1/p,

which is what we wished to show.

Exercise 2.3a. The functor F∗ is exact.
We give two solutions for this exercise.

Solution 1. Let M be an R-module. Then M1/p is clearly an R1/p-module under
the action r1/p ·m1/p = (r ·m)1/p, where the second action is the original R-
action on M . Treating M1/p as an R-module is equivalent to simply restricting
the scalars that may act on M1/p to the members of R1/p that are in the image
of F : R→ R1/p. Since restriction of scalars is an exact functor, so is F∗.

Solution 2. We can also prove exactness directly. Let

0 // L
ϕ // M

ψ // N // 0

be a short exact sequence of R-modules and consider the sequence obtained by
applying the functor F∗:

0 // L1/p ϕ1/p

// M1/p ψ1/p

// N1/p // 0 .

Let `1/p ∈ kerϕ1/p. Then 01/p = ϕ1/p(`1/p) = ϕ(`)1/p, so ϕ(`) = 0. Since ϕ
is injective, ` = 0, so `1/p = 01/p. Hence ϕ1/p is injective and the sequence is
exact at L1/p.

Let m1/p ∈ M . Then m1/p ∈ imϕ1/p if and only if there exists `1/p ∈ L1/p

with m1/p = ϕ1/p(`1/p) = ϕ(`)
1/p

if and only if m ∈ imϕ = ker(ψ) if and only

if ψ1/p(m1/p) = ψ(m)
1/p

= 01/p, i.e. m1/p ∈ kerψ1/p. Therefore imϕ1/p =
kerψ1/p, and the sequence is exact at M1/p.

Let n1/p ∈ N1/p. Choose m ∈ M such that ψ(m) = n. Then ψ1/p(m1/p) =

ψ(n)
1/p

= m1/p, and so ψ is surjective and the sequence is exact at N1/p.
Therefore the sequence is exact after applying F∗, i.e. F∗ is an exact functor.

We can iterate the functor F∗ as many times as we like. We usually denote
by e the number of times we iterate F∗ and call the resulting (exact) functor
F e∗ . For an R-module M we denote F e∗ (M) by M1/pe . For the case M = R,
we can think of R1/pe as the peth roots of elements in R. The R-action on
M1/pe is given by r ·m1/pe = (rp

e

m)1/p
e

. Sometimes, such as when considering
F -purity below, we will be able to show that it doesn’t matter which e we pick
when defining conditions. Other times the value of e will be very important,
and we will even treat certain values as functions of e, such as when studying
Hilbert-Kunz multiplicity.
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Exercise 2.3b. Let I ⊆ R be an ideal and e ≥ 1. Then (R/I)1/p
e

and
R1/pe/I1/p

e

are isomorphic as R-modules.

Solution. The sequence

0 // I // R // R/I // 0

is exact. Therefore, by the exactness of F e∗ , the sequence

0 // I1/p
e // R1/pe // (R/I)

1/pe // 0

is also exact. By the first isomorphism theorem, (R/I)
1/pe ∼= R1/pe/I1/p

e

.

Exercise 2.1. Let S = k[x1, . . . , xd]. Then S1/pe is a free S-module of rank

ped with S-basis
{

(xλ1
1 · · ·x

λd

d )
1/pe

}
0≤λi≤pe−1

.

Solution. Let f1/p
e ∈ S1/pe . For any integer d-tuple (λ1, . . . , λd) with 0 ≤ λi ≤

pe − 1 for all i, denote by f(λ1,...,λd) the sum of the homogeneous parts of f
where the power of xi is congruent to λi modulo pe for all i. Then f is the sum

of all the f(λ1,...,λd)s. Also, for each such d-tuple,
f(λ1,...,λd)

xλ1
1 · · ·x

λd

d

is a polynomial

in S with all exponents multiples of pe, hence is a perfect peth power of some
polynomial g(λ1,...,λd). Therefore

f =
∑

0≤λi≤pe−1

f(λ1,...,λd) =
∑

0≤λi≤pe−1

(g(λ1,...,λd))
pe(xλ1

1 · · ·x
λd

d ), (1)

and so

f1/p
e

=
∑

0≤λi≤pe−1

(
(g(λ1,...,λd))

pe(xλ1
1 · · ·x

λd

d )
)1/pe

=
∑

0≤λi≤pe−1

g(λ1,...,λd) · (x
λ1
1 · · ·x

λd

d )
1/pe

.

Hence the set
{

(xλ1
1 · · ·x

λd

d )
1/pe

}
0≤λi≤pe−1

generates S1/pe as an S-module.

Now suppose that f = 0. Then for each d-tuple (n1, . . . , nd) ∈ Nd, we have
that the degree (n1, . . . , nd) component of the right hand side of equation 1 van-
ishes. For each i we can write ni = peqi + λi with qi, λi ∈ N and λi < pe. The
degree (n1, . . . , nd) component is then the product of the degree (q1, . . . , qd) com-
ponent of g(λ1,...,λd) and xλ1

1 · · ·x
λd

d . Hence the degree (q1, . . . , qd) component

of g(λ1,...,λd) vanishes. This is true for all degrees (n1, . . . , nd) ∈ Nd, and hence

all the polynomials g(λ1,...,λd) are zero. So the set
{

(xλ1
1 · · ·x

λd

d )
1/pe

}
0≤λi≤pe−1

are S-linearly independent, hence an S-basis of S1/pe .
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Exercise 2.1 shows us that the functor F e∗ behaves nicely with respect to
polynomial rings, giving a free module. It would be far too much to ask that
this functor would always give a free module when applied to any ring, but in
our setting we at least have finite generation.

Lemma 2.4. R1/pe is a finitely generated R-module.
Before proving Lemma 2.4 we prove an auxiliary lemma regarding the inter-

action of localization and F e∗ .

Lemma A. Let M be an R-module and W ⊆ R a multiplicative set. Then

W−1(M1/pe) ∼= (W−1M)
1/pe

as W−1R-modules.

Proof. Let ϕ : W−1(M1/pe)→ (W−1M)
1/pe

be given by ϕ
(
m1/pe

u

)
=
(
m
upe

)1/pe
and ψ : (W−1M)

1/pe →W−1(M1/pe) be given by ψ
((

m
u

)1/pe)
= (upe−1·m)

1/pe

u .

Then ϕ is a well-defined W−1R-module homomorphism:

• If m1/pe

u = n1/pe

v , then for some w ∈ W , 0 = w · (v ·m1/pe − u · n1/pe) =

(wp
e

(vp
e

m− upen))
1/pe

, so m
upe = n

upe , and thus

ϕ

(
m1/pe

u

)
=
( m
upe

)1/pe
=
( n

vpe

)1/pe
= ϕ

(
n1/p

e

v

)
.

• If r
v ∈W

−1R, then ϕ
(
r
v ·

m1/pe

u

)
= r

v · ϕ
(
m1/pe

u

)
since

ϕ

(
r

v
· m

1/pe

u

)
= ϕ

(
(rp

e ·m)
1/pe

vu

)
=

(
rp

e ·m
vpeupe

)1/pe

=
r

v
·
( m
upe

)1/pe
.

Similarly, ψ is a well-defined W−1R-module homomorphism:

• If
(
m
u

)1/pe
=
(
n
v

)1/pe
, then for some w ∈W , w · (v ·m− u ·n) = 0, and so

w ·
(
v · (up

e−1 ·m)
1/pe − u · (vp

e−1 · n)
1/pe

)
=
(
wp

e

(vp
e

up
e−1 ·m− up

e

vp
e−1 · n)

)1/pe
=
(
wp

e−1up
e−1vp

e−1 · (w · (v ·m− u · n))
)1/pe

=0,

hence

ψ

((m
u

)1/pe)
=

(up
e−1 ·m)

1/pe

u
=

(vp
e−1 · n)

1/pe

v
= ψ

((n
v

)1/pe)
.
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• If r
v ∈W

−1R, then

ψ

(
r

v
·
(m
u

)1/pe)
= ψ

((
rp

e ·m
vpeu

)1/pe
)

=

(
vp

e(pe−1)up
e−1rp

e ·m
)1/pe

vpeu

=
vp

e−1r · (upe−1 ·m)
1/pe

vpeu

=
r · (upe−1 ·m)

1/pe

vu

=
r

v
· (up

e−1 ·m)
1/pe

u

=
r

v
· ψ
((m

u

)1/pe)

Now suppose that m1/pe

u ∈W−1(M1/pe). Then

ψ ◦ ϕ
(
m1/pe

u

)
= ψ

(( m
upe

)1/pe)
=

(up
e(pe−1) ·m)

1/pe

upe

=
up

e−1 ·m1/pe

upe

=
m1/pe

u
.

Similarly, if
(
m
u

)1/pe ∈ (W−1M)
1/pe

, then

ϕ ◦ ψ
((m

u

)1/pe)
= ϕ

(
(up

e−1 ·m)
1/pe

u

)

=

(
up

e−1 ·m
upe

)1/pe

=
(m
u

)1/pe
.

Therefore ϕ and ψ are inverses of each other, and hence W−1R-module isomor-
phisms.

We are now ready to prove lemma 2.4.
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Proof of Lemma 2.4. We have that R = W−1(S/I) for a polynomial ring S =
k[x1, . . . , xd], an ideal I ⊆ S, and a multiplicative set W ⊆ S/I. We know

that S1/pe is finitely generated as an S-module by Exercise 2.1. Let βi
1/pe ,

i = 1, . . . ,m be S-generators of S1/pe . Then (S/I)
1/pe

is generated at an S/I-

module by (βi + I)
1/pe

, i = 1, . . . ,m: if (f + I)
1/pe ∈ (S/I)

1/pe
, then there

exist gi ∈ S, i = 1, . . . , n, such that f1/p
e

=
∑
i gi · βi

1/pe . Therefore

m∑
i=1

(gi + I) · (βi + I)
1/pe

=

m∑
i=1

(gp
e

i βi + I)
1/pe

=

m∑
i=1

(gp
e

i βi)
1/pe

+ I1/p
e

=

m∑
i=1

gi · β1/pe

i + I1/p
e

=f1/p
e

+ I.

Since (S/I)
1/pe

is finitely generated as an S/I-module, W−1(S/I)
1/pe

is a

finitely generated W−1(S/I)-module. But by Lemma A, W−1(S/I)
1/pe

=

(W−1(S/I))
1/pe

. So R1/pe ∼=
(
W−1(S/I)

)1/pe
is finitely generated as an R =

W−1(S/I)-module.

So now we ask what it is about polynomial rings that make them special with
regards to the Frobenius functor? The next theorem gives us an explanation.

Theorem 2.5. R is regular if and only if R1/pe is a locally free R-module.

2.2 F -purity

We now examine a weaker condition than R1/pe being (locally) free. We will
call a ring F -pure if R is a direct summand of each R1/pe (as R-modules). This
is equivalent to the condition that each inclusion R ⊆ R1/pe is split, i.e. that
there exists an R-module homomorphism s : R1/pe → R such that s|R = idR.
We will call such a homomorphsim an F -splitting of R1/pe .

Exercise 2.7. If R is F -pure and M is an R-module, then the natural map
M →M ⊗R R1/pe is injective.

Solution. Since R is F -pure, the short exact sequence of R-modules

0 // R // R1/pe // R1/pe/R // 0

is split exact, and hence the functor M ⊗R − preserves the exact sequence, i.e.
the short exact sequence

0 // M ⊗R R ∼= M // M ⊗R R1/pe // M ⊗R R1/pe/R // 0
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is exact. Therefore the map M →M ⊗R R1/pe is injective.

One can use the condition of exercise 2.7 to define the concept of F -purity
for more general classes of rings than we consider in this paper.

Exercise 2.8. If R ⊆ R1/pe is split for some e ≥ 1, then it is split for all e ≥ 1

Solution. Suppose that s : R1/pe → R is an F -splitting. Then since R ⊆ R1/p ⊆
R1/pe , restricting s to R1/p gives an F -splitting of R1/p. So we can assume that

e = 1. Now for d ≥ 1, we have that s1/p
d−1

: R1/pd → R1/pd−1

is a splitting of

R1/pd−1 ⊆ R1/pd , and so that inclusion is split. Since this applies for all d ≥ 1,

R ⊆ R1/p ⊆ R1/p2 ⊆ · · · ⊆ R1/pd−1

⊆ R1/pd

is a composition of split inclusions, and R ⊆ R1/pd is therefore split.

Exercise 2.8 lets us know that in general, to prove that R is F -pure, it suffices
to show that R ⊆ R1/p is split.

Exercise 2.9. Suppose R is a domain. If there exists q ∈ SpecR such that Rq

is F -pure, then there is an open neighborhood U ⊆ SpecR of q such that for all
p ∈ U , Rp is F -pure.

Solution. By Lemma 2.4, R1/p is a finitely generated R-module, say with gen-

erators y
1/p
1 , . . . , y

1/p
n . Then for any p ∈ SpecR, (Rp)

1/p
= (R1/p)p is generated

as an Rp-module by
y
1/p
1

1 , . . . ,
y1/pn

1 . Since Rq is F -pure, there exists a splitting

s : (R1/p)q → Rq. For each i, let xi ∈ R, vi ∈ R \ q such that s

(
y
1/p
i

1

)
=
xi
vi

.

Now let U = {p ∈ SpecR|∀i, vi /∈ p} = SpecR \
n⋃
i=1

V (vi). Then U is open

since it is the complement of a finite union of closed sets. Furthermore, q ∈ U
since vi /∈ q for all i, showing that U is a neighborhood of q. Now let p ∈ U and

define a function t : (R1/p)p → Rp by setting t

(
y
1/p
i

1

)
=
xi
vi

and extending Rp-

linearly. We need to show that t is well-defined. Suppose that ri ∈ R, ui ∈ R\p
such that

∑
i
ri
ui
· y

1/p
i

1 = 01/p. Let u = u1 · · ·un, and for all i, let r′i = uri
ui
∈ R.

Then

01/p =
∑
i

ri
ui
· y

1/p
i

1
=
∑
i

r′i
u
· y

1/p
i

1
=

∑
i r
′
i · y

1/p
i

u
,

which implies, since R1/p is a domain, that
∑n
i=1 r

′
i · y

1/p
i = 01/p. Therefore∑n

i=1
r′i
1 ·

y
1/p
i

1 = 01/p in any localization of R1/p, and so in Rq,

0 = s(01/p) = s

(
n∑
i=1

r′i
1
· y

1/p
i

1

)
=

n∑
i=1

r′i
1
· xi
vi
.
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Hence

n∑
i=1

ri
ui
· t

(
y
1/p
i

1

)
=

n∑
i=1

ri
ui
· xi
vi

=
1

u

n∑
i=1

r′i
1
· xi
vi

= 0.

So t is well-defined. Now let ri ∈ R such that
∑n
i=1 ri · y

1/p
i = 11/p. Then

1

1
= s(11/p) = s

(
n∑
i=1

ri
1
· y

1/p
i

1

)
=

n∑
i=1

ri
1
· xi
vi

=

∑n
i=1 r

′
ixi

v
,

where v = v1 · · · vn and r′i = vri
vi

. Hence
∑n
i=1 r

′
ixi = v. So

t

(
11/p

1

)
= t

(
n∑
i=1

ri
1
· y

1/p
i

1

)

=

n∑
i=1

ri
1
· t

(
y
1/p
i

1

)

=

(
n∑
i=1

ri
1
· xi
vi

)

=

∑n
i=1 r

′
ixi

v

=
1

1

Therefore t is an F -splitting for Rp. This holds for all primes p in Uv = SpecR\⋃
i V (vi), which is an open set in SpecR containing q.

In a similar vein, we can use the F -purity of localizations of R to conclude
facts about the F -purity of R itself.

Exercise 2.10. If Rm is F -pure for each maximal ideal m of R, then R is
F -pure.

We prove an auxiliary lemma before solving exercise 2.10.

Lemma B. R ⊆ R1/pe splits if and only if the “evaluation at 1” homomorphsim
ϕ : HomR(R1/pe , R)→ R is surjective.

Proof. By exercise 2.8, we can assume e = 1. If R ⊆ R1/p splits, then there
exists a splitting s ∈ HomR(R1/p, R). So s(11/p) = 1, and therefore for any
r ∈ R, r · s ∈ HomR(R1/pe , R) and

ϕ(r · s) = (r · s)(11/p) = r · s(11/p) = r.
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So ϕ is surjective.
If ϕ is surjective, then there exists s ∈ HomR(R1/pe , R) such that s(11/p) =

ϕ(s) = 1. Therefore s is an F -splitting for R1/p, since for any r ∈ R, the image

of r under the inclusion R ⊆ R1/p is (rp)
1/p

, and s((rp)
1/p

) = s(r · 11/p) =
r · s(11/p) = r.

Solution to Exercise 2.10. Let ϕ : HomR(R1/pe , R) → R be the evaluation at
1 homomorphism. By lemma B, for each maximal ideal, the function ϕm :

(HomR(R1/pe , R))m ∼= HomRm
(R

1/pe

m , Rm) → Rm is surjective. Therefore ϕ is
surjective, and so R is F -pure by lemma B.

Fedder’s Criterion below is a great test for F -purity in some siutations. To
prepare for the statement we need a few facts about how ideals interact with
Frobenius. By I [p

e] we mean the ideal generated by the peth powers of elements
in I; to be precise if I = (a1, . . . , ad), then I [p

e] = (ap
e

1 , . . . , a
pe

d )R.

Exercise 2.12. (I [p
e])

1/pe

= I ·R1/pe

Solution. Suppose I = (a1, . . . , ad). Then

I ·R1/pe = (a1, . . . , ad) ·R1/pe

=

d∑
i=1

ai ·R1/pe

=

d∑
i=1

(ap
e

i )
1/pe

R1/pe

=

(
d∑
i=1

ap
e

i R

)1/pe

=
(

(ap
e

1 , . . . , a
pe

d )R
)1/pe

= (I [p
e])

1/pe

.

Exercise 2.12 proves that I [p
e] is independent of the generators chosen for I,

a fact that is not immediately apparent.

Exercise 2.13. Suppose that R is a regular local ring and I ⊆ R is an ideal.
If x ∈ R, then x ∈ I [pe] if and only if φ(x1/p

e

) ∈ I for all φ ∈ HomR(R1/pe , R).

Solution. Suppose I = (a1, . . . , ad). For any ri ∈ R, and any φ ∈ HomR(R1/pe , R),

φ

( d∑
i=1

ria
pe

i

)1/pe
 = φ

(
d∑
i=1

ai · r1/p
e

i

)
=

d∑
i=1

ai · φ(r
1/pe

i ) ∈ I,
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which proves the forward direction. Now suppose that x ∈ R such that φ(x1/p
e

) ∈
I for all φ ∈ HomR(R1/pe , R). Since R is regular local, Theorem 2.5 gives us that

R1/pe is a (finitely generated) free R-module. Let e
1/pe

1 , . . . , e
1/pe

n be an R-basis

for R1/pe . Then there exist ri ∈ R such that x1/p
e

= r1 · e1/p
e

1 + · · ·+ rn · e1/p
e

n .

For each generator ei the projection map πi taking e
1/pe

i to 1 and e
1/pe

j to 0 for

j 6= i is an R-module homomorphsim. Hence ri = πi(x
1/pe) ∈ I. Therefore

x1/p
e

= r1 · e1/p
e

1 + · · ·+ rn · e1/p
e

n ∈ I ·R1/pe = (I [p
e])

1/pe

which proves that x ∈ I [pe].

The next theorem provides one of our most powerful tools in determining
F -purity.

Theorem 2.14. (Fedder’s Criterion) Suppose that S = k[x1, . . . , xn] and R =
S/I for some radical ideal I ⊆ S. Then for any q ∈ SpecR ⊆ SpecS, Rq is
F -pure if and only if (I [p] : I) 6⊆ q[p].

The following exercises demonstrate the use of Fedder’s Criterion.

Exercise 2.16. The ring R = Fp[x, y, z]/(x3 + y3 + z3) is not F -pure for
p = 2, 3, 5, 11, and in general if p 6≡ 1 mod 3, and is F -pure for p = 7, 13, and
in general if p ≡ 1 mod 3.

Solution. The algebraic variety V (x3 + y3 + z3) has one singular point at the
origin, since that is the only place where the partials of x3 + y3 + z3 vanish.
Therefore, for any maximal ideal m 6= (x, y, z), the ring Rm is regular, hence
F -pure. So now let m = (x, y, z), whence m[p] = (xp, yp, zp). Since m[p] is a
monomial ideal, a polynomial f belongs to m[p] if and only if each monomial
term of f belongs to m[p]. Note that (I [p] : I) = I [p−1] =

(
(x3 + y3 + z3)p−1

)
.

If p ≡ 1 mod 3, then p−1 is divisible by 3, and one of the terms of (x3+y3+

z3)p−1 is x3·
p−1
3 y3·

p−1
3 z3·

p−1
3 = xp−1yp−1zp−1 /∈ m[p]. Therefore (I [p] : I) 6⊆ m[p],

and so Rm is F -pure. By Exercise 2.10, R is F -pure.
Suppose p 6≡ 1 mod 3. Every term of (x3 + y3 + z3)p−1 is of the form

x3e1y3e2z3e3 , where e1, e2, e3 ∈ N and e1 + e2 + e3 = p − 1. Since p − 1 is
not divisible by 3, ei >

p−1
3 for some i. If e1 > p−1

3 , then 3e1 > p − 1,

which means 3e1 ≥ p. But this means that x3e1y3e2z3e3 ∈ (xp, yp, zp) = m[p].
Similarly, if e2 > p−1

3 or e3 > p−1
3 , then x3e1y3e2z3e3 ∈ (xp, yp, zp) = m[p].

Therefore
(
(x3 + y3 + z3)p−1

)
⊆ m[p], and so Rm is not F -pure. Hence R is not

F -pure.

Exercise 2.17. Let S = Fp[x1, . . . , xn], f = xy− z2 ∈ S, g = x4 + y4 + z4 ∈ S.
Then for all p, S/(f) is F -pure and S/(g) is not F -pure.

Solution. The varieties S/(f) and S/(g) are singular only at the origin, so by an
argument similar to the beginning of the previous exercise, we need only check
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Fedder’s Criterion at the maximal ideal m = (x, y, z), which has bracket power
m[p] = (xp, yp, zp).

If I = (f), then I [p] = (fp) and (I [p] : I) = (fp−1). But the polynomial
fp−1 = (xy− z2)p−1 contains the term xp−1yp−1 /∈ m[p], so fp−1 /∈ m[p]. There-
fore S/(f) is F -pure.

If I = (g), then I [p] = (gp) and (I [p] : I) = (gp−1). Each term of (x4 + y4 +
z4)p−1 is of the form x4e1y4e2z4e3 for some e1, e2, e3 ∈ N with e1 + e2 + e3 =
p − 1. Therefore ei ≥ p−1

3 for some i. Then 4ei ≥ 4
3 (p − 1) > p − 1, and so

4ei ≥ p. Hence x4e1y4e2z4e3 ∈ m[p], and so (x4 + y4 + z4)p−1 ∈ m[p]. Therefore
(I [p] : I) ⊆ m[p], and so (S/(g))m is not F -pure. Hence S/(g) is not F -pure.

Exercise 2.18. For any F -pure ring R with fraction field K, if x ∈ K such
that xp ∈ R, then x ∈ R.

Solution. The fraction field K is the ring R localized at the set W of nonzero
elements. Let ϕ : R1/p → R be an F -splitting of R. Then W−1ϕ : W−1R1/p →
W−1R is a splitting extending ϕ, and since W−1R = K and W−1R1/p =

(W−1R)
1/p

= K1/p, W−1ϕ (which we will now write as φ) is a splitting for K.
Now let x ∈ K such that xp ∈ R. Then

x = φ((xp)
1/p

) ∈ φ(R1/p) = ϕ(R1/p) = R.
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