A Study of The Paper "A Survey of Test Ideals" by Karl Schwede and Kevin Tucker
 William Taylor
 University of Arkansas

Disclaimer: These notes are not guaranteed to be complete or error-free, but are desinged to be a resource for other students wishing to explore the wonderful world of positive characteristic. Please send any comments or corrections to wdtaylor@uark.edu. These notes are hosted at www.wdtaylor.net/papers.

Setting: In this paper, all rings are reduced, essentially of finite type over a field k. To be precise, $R=W^{-1}\left(\frac{k\left[x_{1}, \ldots, x_{n}\right]}{I}\right)$ for some natural n, (radical) ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$, and multiplicatively closed subset $W \subseteq \frac{k\left[x_{1}, \ldots, x_{n}\right]}{I}$.

2 Characteristic p Preliminaries

In section 2 , the field k has characteristic a prime $p>0$ (that is, $p k=0$), and is perfect (that is, $k^{p}=k$).

2.1 The Frobenius Endomorphism

In characteristic $p>0$, the Frobenius map $F: R \rightarrow R$ given by $F(r)=r^{p}$ is an injective ring homomorphism: we have $F(r s)=(r s)^{p}=r^{p} s^{p}=F(r) F(s)$; $F(x+y)=(x+y)^{p}=x^{p}+y^{p}=F(x)+F(y)$ since p divides any binomial coefficient $\binom{p}{k}$ with $0<k<p$; and if $F(x)=F(y)$, then $x^{p}=y^{p}$, so $0=$ $x^{p}-y^{p}=(x-y)^{p}$ implies $x=y$ since R is reduced.

Since F is an injective endomorphism, R is naturally ring-isomorphic to its image under F. In order to distinguish the domain from the target, we can relabel the target space as $R^{1 / p}$, and consider it as the "ring of p-th roots of elements of R." We will most often treat $R^{1 / p}$ as an R-module, with elements labeled $r^{1 / p}$ for $r \in R$ and with the action of R on $R^{1 / p}$ given by $s \cdot r^{1 / p}=$ $\left(s^{p} r\right)^{1 / p}$. In fact, for any R-module M, we define M^{p} to be the module with elements $m^{1 / p}$ for $m \in M$, addition given by $m_{1}^{1 / p}+m_{2}^{1 / p}=\left(m_{1}+m_{2}\right)^{1 / p}$ and with action given by $r \cdot m^{1 / p}=\left(r^{p} m\right)^{1 / p}$. In particular, if $I=\left(a_{1}, \ldots, a_{d}\right) \subseteq R$ is an ideal, then $I^{1 / p}=\left(a_{1}^{1 / p}, \ldots, a_{d}^{1 / p}\right) \subseteq R^{1 / p}$ (note here that this is an ideal in the ring $R^{1 / p}$).

The Frobenius map induces a functor F_{*} on R-modules given by $F_{*}(M)=$ $M^{1 / p}$. In order to complete the functor definition we need to describe how F_{*} acts on R-module homomorphisms. Let $\varphi: M \rightarrow N$ be a homomorphism of
R-modules. We define $\varphi^{1 / p}=F_{*}(\varphi) \in \operatorname{Hom}_{R}\left(M^{1 / p}, N^{1 / p}\right)$ by $\varphi^{1 / p}\left(m^{1 / p}\right)=$ $\varphi(m)^{1 / p}$. We confirm that this is an R-module homomorphsim by showing it is compatible with the action of R. Let $r \in R$, then

$$
\varphi^{1 / p}\left(r \cdot m^{1 / p}\right)=\varphi^{1 / p}\left(\left(r^{p} m\right)^{1 / p}\right)=\varphi\left(r^{p} m\right)^{1 / p}=\left(r^{p} \varphi(m)\right)^{1 / p}=r \cdot \varphi(m)^{1 / p}
$$

which is what we wished to show.
Exercise 2.3a. The functor F_{*} is exact.
We give two solutions for this exercise.
Solution 1. Let M be an R-module. Then $M^{1 / p}$ is clearly an $R^{1 / p}$-module under the action $r^{1 / p} \cdot m^{1 / p}=(r \cdot m)^{1 / p}$, where the second action is the original R action on M. Treating $M^{1 / p}$ as an R-module is equivalent to simply restricting the scalars that may act on $M^{1 / p}$ to the members of $R^{1 / p}$ that are in the image of $F: R \rightarrow R^{1 / p}$. Since restriction of scalars is an exact functor, so is F_{*}.

Solution 2. We can also prove exactness directly. Let

be a short exact sequence of R-modules and consider the sequence obtained by applying the functor F_{*} :

$$
0 \longrightarrow L^{1 / p} \xrightarrow{\varphi^{1 / p}} M^{1 / p} \xrightarrow{\psi^{1 / p}} N^{1 / p} \longrightarrow 0
$$

Let $\ell^{1 / p} \in \operatorname{ker} \varphi^{1 / p}$. Then $0^{1 / p}=\varphi^{1 / p}\left(\ell^{1 / p}\right)=\varphi(\ell)^{1 / p}$, so $\varphi(\ell)=0$. Since φ is injective, $\ell=0$, so $\ell^{1 / p}=0^{1 / p}$. Hence $\varphi^{1 / p}$ is injective and the sequence is exact at $L^{1 / p}$.

Let $m^{1 / p} \in M$. Then $m^{1 / p} \in \operatorname{im} \varphi^{1 / p}$ if and only if there exists $\ell^{1 / p} \in L^{1 / p}$ with $m^{1 / p}=\varphi^{1 / p}\left(\ell^{1 / p}\right)=\varphi(\ell)^{1 / p}$ if and only if $m \in \operatorname{im} \varphi=\operatorname{ker}(\psi)$ if and only if $\psi^{1 / p}\left(m^{1 / p}\right)=\psi(m)^{1 / p}=0^{1 / p}$, i.e. $m^{1 / p} \in \operatorname{ker} \psi^{1 / p}$. Therefore $\operatorname{im} \varphi^{1 / p}=$ $\operatorname{ker} \psi^{1 / p}$, and the sequence is exact at $M^{1 / p}$.

Let $n^{1 / p} \in N^{1 / p}$. Choose $m \in M$ such that $\psi(m)=n$. Then $\psi^{1 / p}\left(m^{1 / p}\right)=$ $\psi(n)^{1 / p}=m^{1 / p}$, and so ψ is surjective and the sequence is exact at $N^{1 / p}$.

Therefore the sequence is exact after applying F_{*}, i.e. F_{*} is an exact functor.

We can iterate the functor F_{*} as many times as we like. We usually denote by e the number of times we iterate F_{*} and call the resulting (exact) functor F_{*}^{e}. For an R-module M we denote $F_{*}^{e}(M)$ by $M^{1 / p^{e}}$. For the case $M=R$, we can think of $R^{1 / p^{e}}$ as the p^{e} th roots of elements in R. The R-action on $M^{1 / p^{e}}$ is given by $r \cdot m^{1 / p^{e}}=\left(r^{p^{e}} m\right)^{1 / p^{e}}$. Sometimes, such as when considering F-purity below, we will be able to show that it doesn't matter which e we pick when defining conditions. Other times the value of e will be very important, and we will even treat certain values as functions of e, such as when studying Hilbert-Kunz multiplicity.

Exercise 2.3b. Let $I \subseteq R$ be an ideal and $e \geq 1$. Then $(R / I)^{1 / p^{e}}$ and $R^{1 / p^{e}} / I^{1 / p^{e}}$ are isomorphic as R-modules.

Solution. The sequence

$$
0 \longrightarrow I \longrightarrow R \longrightarrow R / I \longrightarrow 0
$$

is exact. Therefore, by the exactness of F_{*}^{e}, the sequence

$$
0 \longrightarrow I^{1 / p^{e}} \longrightarrow R^{1 / p^{e}} \longrightarrow(R / I)^{1 / p^{e}} \longrightarrow 0
$$

is also exact. By the first isomorphism theorem, $(R / I)^{1 / p^{e}} \cong R^{1 / p^{e}} / I^{1 / p^{e}}$.

Exercise 2.1. Let $S=k\left[x_{1}, \ldots, x_{d}\right]$. Then $S^{1 / p^{e}}$ is a free S-module of rank $p^{e d}$ with S-basis $\left\{\left(x_{1}^{\lambda_{1}} \cdots x_{d}^{\lambda_{d}}\right)^{1 / p^{e}}\right\}_{0 \leq \lambda_{i} \leq p^{e}-1}$.

Solution. Let $f^{1 / p^{e}} \in S^{1 / p^{e}}$. For any integer d-tuple ($\lambda_{1}, \ldots, \lambda_{d}$) with $0 \leq \lambda_{i} \leq$ $p^{e}-1$ for all i, denote by $f_{\left(\lambda_{1}, \ldots, \lambda_{d}\right)}$ the sum of the homogeneous parts of f where the power of x_{i} is congruent to λ_{i} modulo p^{e} for all i. Then f is the sum of all the $f_{\left(\lambda_{1}, \ldots, \lambda_{d}\right)}$ s. Also, for each such d-tuple, $\frac{f_{\left(\lambda_{1}, \ldots, \lambda_{d}\right)}}{x_{1}^{\lambda_{1}} \cdots x_{d} \lambda_{d}}$ is a polynomial in S with all exponents multiples of p^{e}, hence is a perfect p^{e} th power of some polynomial $g_{\left(\lambda_{1}, \ldots, \lambda_{d}\right)}$. Therefore

$$
\begin{equation*}
f=\sum_{0 \leq \lambda_{i} \leq p^{e}-1} f_{\left(\lambda_{1}, \ldots, \lambda_{d}\right)}=\sum_{0 \leq \lambda_{i} \leq p^{e}-1}\left(g_{\left(\lambda_{1}, \ldots, \lambda_{d}\right)}\right)^{p^{e}}\left(x_{1}^{\lambda_{1}} \cdots x_{d}^{\lambda_{d}}\right), \tag{1}
\end{equation*}
$$

and so

$$
\begin{aligned}
f^{1 / p^{e}} & =\sum_{0 \leq \lambda_{i} \leq p^{e}-1}\left(\left(g_{\left(\lambda_{1}, \ldots, \lambda_{d}\right)}\right)^{p^{e}}\left(x_{1}^{\lambda_{1}} \cdots x_{d}^{\lambda_{d}}\right)\right)^{1 / p^{e}} \\
& =\sum_{0 \leq \lambda_{i} \leq p^{e}-1} g_{\left(\lambda_{1}, \ldots, \lambda_{d}\right)} \cdot\left(x_{1}^{\lambda_{1}} \cdots x_{d}^{\lambda_{d}}\right)^{1 / p^{e}}
\end{aligned}
$$

Hence the set $\left\{\left(x_{1}^{\lambda_{1}} \cdots x_{d}^{\lambda_{d}}\right)^{1 / p^{e}}\right\}_{0 \leq \lambda_{i} \leq p^{e}-1}$ generates $S^{1 / p^{e}}$ as an S-module.
Now suppose that $f=0$. Then for each d-tuple $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$, we have that the degree $\left(n_{1}, \ldots, n_{d}\right)$ component of the right hand side of equation 1 vanishes. For each i we can write $n_{i}=p^{e} q_{i}+\lambda_{i}$ with $q_{i}, \lambda_{i} \in \mathbb{N}$ and $\lambda_{i}<p^{e}$. The degree $\left(n_{1}, \ldots, n_{d}\right)$ component is then the product of the degree $\left(q_{1}, \ldots, q_{d}\right)$ component of $g_{\left(\lambda_{1}, \ldots, \lambda_{d}\right)}$ and $x_{1}^{\lambda_{1}} \cdots x_{d}^{\lambda_{d}}$. Hence the degree $\left(q_{1}, \ldots, q_{d}\right)$ component of $g_{\left(\lambda_{1}, \ldots, \lambda_{d}\right)}$ vanishes. This is true for all degrees $\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{N}^{d}$, and hence all the polynomials $g_{\left(\lambda_{1}, \ldots, \lambda_{d}\right)}$ are zero. So the set $\left\{\left(x_{1}^{\lambda_{1}} \cdots x_{d}^{\lambda_{d}}\right)^{1 / p^{e}}\right\}_{0 \leq \lambda_{i} \leq p^{e}-1}$ are S-linearly independent, hence an S-basis of $S^{1 / p^{e}}$.

Exercise 2.1 shows us that the functor F_{*}^{e} behaves nicely with respect to polynomial rings, giving a free module. It would be far too much to ask that this functor would always give a free module when applied to any ring, but in our setting we at least have finite generation.

Lemma 2.4. $R^{1 / p^{e}}$ is a finitely generated R-module.
Before proving Lemma 2.4 we prove an auxiliary lemma regarding the interaction of localization and F_{*}^{e}.

Lemma A. Let M be an R-module and $W \subseteq R$ a multiplicative set. Then $W^{-1}\left(M^{1 / p^{e}}\right) \cong\left(W^{-1} M\right)^{1 / p^{e}}$ as $W^{-1} R$-modules.

Proof. Let $\varphi: W^{-1}\left(M^{1 / p^{e}}\right) \rightarrow\left(W^{-1} M\right)^{1 / p^{e}}$ be given by $\varphi\left(\frac{m^{1 / p^{e}}}{u}\right)=\left(\frac{m}{u^{p^{e}}}\right)^{1 / p^{e}}$ and $\psi:\left(W^{-1} M\right)^{1 / p^{e}} \rightarrow W^{-1}\left(M^{1 / p^{e}}\right)$ be given by $\psi\left(\left(\frac{m}{u}\right)^{1 / p^{e}}\right)=\frac{\left(u^{p^{e}-1} \cdot m\right)^{1 / p^{e}}}{u}$. Then φ is a well-defined $W^{-1} R$-module homomorphism:

- If $\frac{m^{1 / p^{e}}}{u}=\frac{n^{1 / p^{e}}}{v}$, then for some $w \in W, 0=w \cdot\left(v \cdot m^{1 / p^{e}}-u \cdot n^{1 / p^{e}}\right)=$ $\left(w^{p^{e}}\left(v^{p^{e}} m-u^{p^{e}} n\right)\right)^{1 / p^{e}}$, so $\frac{m}{u^{p^{e}}}=\frac{n}{u^{p^{e}}}$, and thus

$$
\varphi\left(\frac{m^{1 / p^{e}}}{u}\right)=\left(\frac{m}{u^{p^{e}}}\right)^{1 / p^{e}}=\left(\frac{n}{v^{p^{e}}}\right)^{1 / p^{e}}=\varphi\left(\frac{n^{1 / p^{e}}}{v}\right)
$$

- If $\frac{r}{v} \in W^{-1} R$, then $\varphi\left(\frac{r}{v} \cdot \frac{m^{1 / p^{e}}}{u}\right)=\frac{r}{v} \cdot \varphi\left(\frac{m^{1 / p^{e}}}{u}\right)$ since

$$
\varphi\left(\frac{r}{v} \cdot \frac{m^{1 / p^{e}}}{u}\right)=\varphi\left(\frac{\left(r^{p^{e}} \cdot m\right)^{1 / p^{e}}}{v u}\right)=\left(\frac{r^{p^{e}} \cdot m}{v^{p^{e}} u^{p^{e}}}\right)^{1 / p^{e}}=\frac{r}{v} \cdot\left(\frac{m}{u^{p^{e}}}\right)^{1 / p^{e}} .
$$

Similarly, ψ is a well-defined $W^{-1} R$-module homomorphism:

- If $\left(\frac{m}{u}\right)^{1 / p^{e}}=\left(\frac{n}{v}\right)^{1 / p^{e}}$, then for some $w \in W, w \cdot(v \cdot m-u \cdot n)=0$, and so

$$
\begin{aligned}
& w \cdot\left(v \cdot\left(u^{p^{e}-1} \cdot m\right)^{1 / p^{e}}-u \cdot\left(v^{p^{e}-1} \cdot n\right)^{1 / p^{e}}\right) \\
= & \left(w^{p^{e}}\left(v^{p^{e}} u^{p^{e}-1} \cdot m-u^{p^{e}} v^{p^{e}-1} \cdot n\right)\right)^{1 / p^{e}} \\
= & \left(w^{p^{e}-1} u^{p^{e}-1} v^{p^{e}-1} \cdot(w \cdot(v \cdot m-u \cdot n))\right)^{1 / p^{e}} \\
= & 0,
\end{aligned}
$$

hence

$$
\psi\left(\left(\frac{m}{u}\right)^{1 / p^{e}}\right)=\frac{\left(u^{p^{e}-1} \cdot m\right)^{1 / p^{e}}}{u}=\frac{\left(v^{p^{e}-1} \cdot n\right)^{1 / p^{e}}}{v}=\psi\left(\left(\frac{n}{v}\right)^{1 / p^{e}}\right)
$$

- If $\frac{r}{v} \in W^{-1} R$, then

$$
\begin{aligned}
\psi\left(\frac{r}{v} \cdot\left(\frac{m}{u}\right)^{1 / p^{e}}\right) & =\psi\left(\left(\frac{r^{p^{e}} \cdot m}{v^{p^{e}} u}\right)^{1 / p^{e}}\right) \\
& =\frac{\left(v^{p^{e}\left(p^{e}-1\right)} u^{p^{e}-1} r^{p^{e}} \cdot m\right)^{1 / p^{e}}}{v^{p^{e}} u} \\
& =\frac{v^{p^{e}-1} r \cdot\left(u^{p^{e}-1} \cdot m\right)^{1 / p^{e}}}{v^{p^{e}} u} \\
& =\frac{r \cdot\left(u^{p^{e}-1} \cdot m\right)^{1 / p^{e}}}{v u} \\
& =\frac{r}{v} \cdot \frac{\left(u^{p^{e}-1} \cdot m\right)^{1 / p^{e}}}{u} \\
& =\frac{r}{v} \cdot \psi\left(\left(\frac{m}{u}\right)^{1 / p^{e}}\right)
\end{aligned}
$$

Now suppose that $\frac{m^{1 / p^{e}}}{u} \in W^{-1}\left(M^{1 / p^{e}}\right)$. Then

$$
\begin{aligned}
\psi \circ \varphi\left(\frac{m^{1 / p^{e}}}{u}\right) & =\psi\left(\left(\frac{m}{u^{p^{e}}}\right)^{1 / p^{e}}\right) \\
& =\frac{\left(u^{p^{e}\left(p^{e}-1\right)} \cdot m\right)^{1 / p^{e}}}{u^{p^{e}}} \\
& =\frac{u^{p^{e}-1} \cdot m^{1 / p^{e}}}{u^{p^{e}}} \\
& =\frac{m^{1 / p^{e}}}{u} .
\end{aligned}
$$

Similarly, if $\left(\frac{m}{u}\right)^{1 / p^{e}} \in\left(W^{-1} M\right)^{1 / p^{e}}$, then

$$
\begin{aligned}
\varphi \circ \psi\left(\left(\frac{m}{u}\right)^{1 / p^{e}}\right) & =\varphi\left(\frac{\left(u^{p^{e}-1} \cdot m\right)^{1 / p^{e}}}{u}\right) \\
& =\left(\frac{u^{p^{e}-1} \cdot m}{u^{p^{e}}}\right)^{1 / p^{e}} \\
& =\left(\frac{m}{u}\right)^{1 / p^{e}}
\end{aligned}
$$

Therefore φ and ψ are inverses of each other, and hence $W^{-1} R$-module isomorphisms.

We are now ready to prove lemma 2.4.

Proof of Lemma 2.4. We have that $R=W^{-1}(S / I)$ for a polynomial ring $S=$ $k\left[x_{1}, \ldots, x_{d}\right]$, an ideal $I \subseteq S$, and a multiplicative set $W \subseteq S / I$. We know that $S^{1 / p^{e}}$ is finitely generated as an S-module by Exercise 2.1. Let $\beta_{i}{ }^{1 / p^{e}}$, $i=1, \ldots, m$ be S-generators of $S^{1 / p^{e}}$. Then $(S / I)^{1 / p^{e}}$ is generated at an S / I module by $\left(\beta_{i}+I\right)^{1 / p^{e}}, i=1, \ldots, m$: if $(f+I)^{1 / p^{e}} \in(S / I)^{1 / p^{e}}$, then there exist $g_{i} \in S, i=1, \ldots, n$, such that $f^{1 / p^{e}}=\sum_{i} g_{i} \cdot \beta_{i}{ }^{1 / p^{e}}$. Therefore

$$
\begin{aligned}
\sum_{i=1}^{m}\left(g_{i}+I\right) \cdot\left(\beta_{i}+I\right)^{1 / p^{e}} & =\sum_{i=1}^{m}\left(g_{i}^{p^{e}} \beta_{i}+I\right)^{1 / p^{e}} \\
& =\sum_{i=1}^{m}\left(g_{i}^{p^{e}} \beta_{i}\right)^{1 / p^{e}}+I^{1 / p^{e}} \\
& =\sum_{i=1}^{m} g_{i} \cdot \beta_{i}^{1 / p^{e}}+I^{1 / p^{e}} \\
& =f^{1 / p^{e}}+I
\end{aligned}
$$

Since $(S / I)^{1 / p^{e}}$ is finitely generated as an S / I-module, $W^{-1}(S / I)^{1 / p^{e}}$ is a finitely generated $W^{-1}(S / I)$-module. But by Lemma A, $W^{-1}(S / I)^{1 / p^{e}}=$ $\left(W^{-1}(S / I)\right)^{1 / p^{e}}$. So $R^{1 / p^{e}} \cong\left(W^{-1}(S / I)\right)^{1 / p^{e}}$ is finitely generated as an $R=$ $W^{-1}(S / I)$-module.

So now we ask what it is about polynomial rings that make them special with regards to the Frobenius functor? The next theorem gives us an explanation.

Theorem 2.5. R is regular if and only if $R^{1 / p^{e}}$ is a locally free R-module.

$2.2 \quad F$-purity

We now examine a weaker condition than $R^{1 / p^{e}}$ being (locally) free. We will call a ring F-pure if R is a direct summand of each $R^{1 / p^{e}}$ (as R-modules). This is equivalent to the condition that each inclusion $R \subseteq R^{1 / p^{e}}$ is split, i.e. that there exists an R-module homomorphism $s: R^{1 / p^{e}} \rightarrow R$ such that $\left.s\right|_{R}=\mathrm{id}_{R}$. We will call such a homomorphsim an F-splitting of $R^{1 / p^{e}}$.

Exercise 2.7. If R is F-pure and M is an R-module, then the natural map $M \rightarrow M \otimes_{R} R^{1 / p^{e}}$ is injective.

Solution. Since R is F-pure, the short exact sequence of R-modules

$$
0 \longrightarrow R \longrightarrow R^{1 / p^{e}} \longrightarrow R^{1 / p^{e}} / R \longrightarrow 0
$$

is split exact, and hence the functor $M \otimes_{R}$ - preserves the exact sequence, i.e. the short exact sequence

$$
0 \longrightarrow M \otimes_{R} R \cong M \longrightarrow M \otimes_{R} R^{1 / p^{e}} \longrightarrow M \otimes_{R} R^{1 / p^{e}} / R \longrightarrow 0
$$

is exact. Therefore the map $M \rightarrow M \otimes_{R} R^{1 / p^{e}}$ is injective.
One can use the condition of exercise 2.7 to define the concept of F-purity for more general classes of rings than we consider in this paper.

Exercise 2.8. If $R \subseteq R^{1 / p^{e}}$ is split for some $e \geq 1$, then it is split for all $e \geq 1$
Solution. Suppose that $s: R^{1 / p^{e}} \rightarrow R$ is an F-splitting. Then since $R \subseteq R^{1 / p} \subseteq$ $R^{1 / p^{e}}$, restricting s to $R^{1 / p}$ gives an F-splitting of $R^{1 / p}$. So we can assume that $e=1$. Now for $d \geq 1$, we have that $s^{1 / p^{d-1}}: R^{1 / p^{d}} \rightarrow R^{1 / p^{d-1}}$ is a splitting of $R^{1 / p^{d-1}} \subseteq R^{1 / p^{d}}$, and so that inclusion is split. Since this applies for all $d \geq 1$,

$$
R \subseteq R^{1 / p} \subseteq R^{1 / p^{2}} \subseteq \cdots \subseteq R^{1 / p^{d-1}} \subseteq R^{1 / p^{d}}
$$

is a composition of split inclusions, and $R \subseteq R^{1 / p^{d}}$ is therefore split.
Exercise 2.8 lets us know that in general, to prove that R is F-pure, it suffices to show that $R \subseteq R^{1 / p}$ is split.

Exercise 2.9. Suppose R is a domain. If there exists $\mathfrak{q} \in \operatorname{Spec} R$ such that $R_{\mathfrak{q}}$ is F-pure, then there is an open neighborhood $U \subseteq \operatorname{Spec} R$ of \mathfrak{q} such that for all $\mathfrak{p} \in U, R_{\mathfrak{p}}$ is F-pure.

Solution. By Lemma 2.4, $R^{1 / p}$ is a finitely generated R-module, say with generators $y_{1}^{1 / p}, \ldots, y_{n}^{1 / p}$. Then for any $\mathfrak{p} \in \operatorname{Spec} R,\left(R_{\mathfrak{p}}\right)^{1 / p}=\left(R^{1 / p}\right)_{\mathfrak{p}}$ is generated as an $R_{\mathfrak{p}}$-module by $\frac{y_{1}^{1 / p}}{1}, \ldots, \frac{y_{n}^{1 / p}}{1}$. Since $R_{\mathfrak{q}}$ is F-pure, there exists a splitting $s:\left(R^{1 / p}\right)_{\mathfrak{q}} \rightarrow R_{\mathfrak{q}}$. For each i, let $x_{i} \in R, v_{i} \in R \backslash \mathfrak{q}$ such that $s\left(\frac{y_{i}^{1 / p}}{1}\right)=\frac{x_{i}}{v_{i}}$.

$$
\text { Now let } U=\left\{\mathfrak{p} \in \operatorname{Spec} R \mid \forall i, v_{i} \notin \mathfrak{p}\right\}=\operatorname{Spec} R \backslash \bigcup_{i=1}^{n} V\left(v_{i}\right) \text {. Then } U \text { is open }
$$ since it is the complement of a finite union of closed sets. Furthermore, $\mathfrak{q} \in U$ since $v_{i} \notin \mathfrak{q}$ for all i, showing that U is a neighborhood of \mathfrak{q}. Now let $\mathfrak{p} \in U$ and define a function $t:\left(R^{1 / p}\right)_{\mathfrak{p}} \rightarrow R_{\mathfrak{p}}$ by setting $t\left(\frac{y_{i}^{1 / p}}{1}\right)=\frac{x_{i}}{v_{i}}$ and extending $R_{\mathfrak{p}^{-}}$ linearly. We need to show that t is well-defined. Suppose that $r_{i} \in R, u_{i} \in R \backslash \mathfrak{p}$ such that $\sum_{i} \frac{r_{i}}{u_{i}} \cdot \frac{y_{i}^{1 / p}}{1}=0^{1 / p}$. Let $u=u_{1} \cdots u_{n}$, and for all i, let $r_{i}^{\prime}=\frac{u r_{i}}{u_{i}} \in R$. Then

$$
0^{1 / p}=\sum_{i} \frac{r_{i}}{u_{i}} \cdot \frac{y_{i}^{1 / p}}{1}=\sum_{i} \frac{r_{i}^{\prime}}{u} \cdot \frac{y_{i}^{1 / p}}{1}=\frac{\sum_{i} r_{i}^{\prime} \cdot y_{i}^{1 / p}}{u}
$$

which implies, since $R^{1 / p}$ is a domain, that $\sum_{i=1}^{n} r_{i}^{\prime} \cdot y_{i}^{1 / p}=0^{1 / p}$. Therefore $\sum_{i=1}^{n} \frac{r_{i}^{\prime}}{1} \cdot \frac{y_{i}^{1 / p}}{1}=0^{1 / p}$ in any localization of $R^{1 / p}$, and so in $R_{\mathfrak{q}}$,

$$
0=s\left(0^{1 / p}\right)=s\left(\sum_{i=1}^{n} \frac{r_{i}^{\prime}}{1} \cdot \frac{y_{i}^{1 / p}}{1}\right)=\sum_{i=1}^{n} \frac{r_{i}^{\prime}}{1} \cdot \frac{x_{i}}{v_{i}}
$$

Hence

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{r_{i}}{u_{i}} \cdot t\left(\frac{y_{i}^{1 / p}}{1}\right) & =\sum_{i=1}^{n} \frac{r_{i}}{u_{i}} \cdot \frac{x_{i}}{v_{i}} \\
& =\frac{1}{u} \sum_{i=1}^{n} \frac{r_{i}^{\prime}}{1} \cdot \frac{x_{i}}{v_{i}} \\
& =0 .
\end{aligned}
$$

So t is well-defined. Now let $r_{i} \in R$ such that $\sum_{i=1}^{n} r_{i} \cdot y_{i}^{1 / p}=1^{1 / p}$. Then

$$
\frac{1}{1}=s\left(1^{1 / p}\right)=s\left(\sum_{i=1}^{n} \frac{r_{i}}{1} \cdot \frac{y_{i}^{1 / p}}{1}\right)=\sum_{i=1}^{n} \frac{r_{i}}{1} \cdot \frac{x_{i}}{v_{i}}=\frac{\sum_{i=1}^{n} r_{i}^{\prime} x_{i}}{v}
$$

where $v=v_{1} \cdots v_{n}$ and $r_{i}^{\prime}=\frac{v r_{i}}{v_{i}}$. Hence $\sum_{i=1}^{n} r_{i}^{\prime} x_{i}=v$. So

$$
\begin{aligned}
t\left(\frac{1^{1 / p}}{1}\right) & =t\left(\sum_{i=1}^{n} \frac{r_{i}}{1} \cdot \frac{y_{i}^{1 / p}}{1}\right) \\
& =\sum_{i=1}^{n} \frac{r_{i}}{1} \cdot t\left(\frac{y_{i}^{1 / p}}{1}\right) \\
& =\left(\sum_{i=1}^{n} \frac{r_{i}}{1} \cdot \frac{x_{i}}{v_{i}}\right) \\
& =\frac{\sum_{i=1}^{n} r_{i}^{\prime} x_{i}}{v} \\
& =\frac{1}{1}
\end{aligned}
$$

Therefore t is an F-splitting for $R_{\mathfrak{p}}$. This holds for all primes \mathfrak{p} in $U_{v}=\operatorname{Spec} R \backslash$ $\bigcup_{i} V\left(v_{i}\right)$, which is an open set in $\operatorname{Spec} R$ containing \mathfrak{q}.

In a similar vein, we can use the F-purity of localizations of R to conclude facts about the F-purity of R itself.

Exercise 2.10. If $R_{\mathfrak{m}}$ is F-pure for each maximal ideal \mathfrak{m} of R, then R is F-pure.

We prove an auxiliary lemma before solving exercise 2.10.
Lemma B. $R \subseteq R^{1 / p^{e}}$ splits if and only if the "evaluation at 1 " homomorphsim $\varphi: \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right) \rightarrow R$ is surjective.

Proof. By exercise 2.8, we can assume $e=1$. If $R \subseteq R^{1 / p}$ splits, then there exists a splitting $s \in \operatorname{Hom}_{R}\left(R^{1 / p}, R\right)$. So $s\left(1^{1 / p}\right)=1$, and therefore for any $r \in R, r \cdot s \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$ and

$$
\varphi(r \cdot s)=(r \cdot s)\left(1^{1 / p}\right)=r \cdot s\left(1^{1 / p}\right)=r .
$$

So φ is surjective.
If φ is surjective, then there exists $s \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$ such that $s\left(1^{1 / p}\right)=$ $\varphi(s)=1$. Therefore s is an F-splitting for $R^{1 / p}$, since for any $r \in R$, the image of r under the inclusion $R \subseteq R^{1 / p}$ is $\left(r^{p}\right)^{1 / p}$, and $s\left(\left(r^{p}\right)^{1 / p}\right)=s\left(r \cdot 1^{1 / p}\right)=$ $r \cdot s\left(1^{1 / p}\right)=r$.
Solution to Exercise 2.10. Let $\varphi: \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right) \rightarrow R$ be the evaluation at 1 homomorphism. By lemma B , for each maximal ideal, the function $\varphi_{\mathfrak{m}}$: $\left(\operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)\right)_{\mathfrak{m}} \cong \operatorname{Hom}_{R_{\mathfrak{m}}}\left(R_{\mathfrak{m}}^{1 / p^{e}}, R_{\mathfrak{m}}\right) \rightarrow R_{\mathfrak{m}}$ is surjective. Therefore φ is surjective, and so R is F-pure by lemma B.

Fedder's Criterion below is a great test for F-purity in some siutations. To prepare for the statement we need a few facts about how ideals interact with Frobenius. By $I^{\left[p^{e}\right]}$ we mean the ideal generated by the p^{e} th powers of elements in I; to be precise if $I=\left(a_{1}, \ldots, a_{d}\right)$, then $I^{\left[p^{e}\right]}=\left(a_{1}^{p^{e}}, \ldots, a_{d}^{p^{e}}\right)_{R}$.

Exercise 2.12. $\left(I^{\left[p^{e}\right]}\right)^{1 / p^{e}}=I \cdot R^{1 / p^{e}}$
Solution. Suppose $I=\left(a_{1}, \ldots, a_{d}\right)$. Then

$$
\begin{aligned}
I \cdot R^{1 / p^{e}} & =\left(a_{1}, \ldots, a_{d}\right) \cdot R^{1 / p^{e}} \\
& =\sum_{i=1}^{d} a_{i} \cdot R^{1 / p^{e}} \\
& =\sum_{i=1}^{d}\left(a_{i}^{p^{e}}\right)^{1 / p^{e}} R^{1 / p^{e}} \\
& =\left(\sum_{i=1}^{d} a_{i}^{p^{e}} R\right)^{1 / p^{e}} \\
& =\left(\left(a_{1}^{p^{e}}, \ldots, a_{d}^{p^{e}}\right) R\right)^{1 / p^{e}} \\
& =\left(I^{\left[p^{e}\right]}\right)^{1 / p^{e}} .
\end{aligned}
$$

Exercise 2.12 proves that $I^{\left[p^{e}\right]}$ is independent of the generators chosen for I, a fact that is not immediately apparent.

Exercise 2.13. Suppose that R is a regular local ring and $I \subseteq R$ is an ideal. If $x \in R$, then $x \in I^{\left[p^{e}\right]}$ if and only if $\phi\left(x^{1 / p^{e}}\right) \in I$ for all $\phi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$.
Solution. Suppose $I=\left(a_{1}, \ldots, a_{d}\right)$. For any $r_{i} \in R$, and any $\phi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$,

$$
\phi\left(\left(\sum_{i=1}^{d} r_{i} a_{i}^{p^{e}}\right)^{1 / p^{e}}\right)=\phi\left(\sum_{i=1}^{d} a_{i} \cdot r_{i}^{1 / p^{e}}\right)=\sum_{i=1}^{d} a_{i} \cdot \phi\left(r_{i}^{1 / p^{e}}\right) \in I,
$$

which proves the forward direction. Now suppose that $x \in R$ such that $\phi\left(x^{1 / p^{e}}\right) \in$ I for all $\phi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$. Since R is regular local, Theorem 2.5 gives us that $R^{1 / p^{e}}$ is a (finitely generated) free R-module. Let $e_{1}^{1 / p^{e}}, \ldots, e_{n}^{1 / p^{e}}$ be an R-basis for $R^{1 / p^{e}}$. Then there exist $r_{i} \in R$ such that $x^{1 / p^{e}}=r_{1} \cdot e_{1}^{1 / p^{e}}+\cdots+r_{n} \cdot e_{n}^{1 / p^{e}}$. For each generator e_{i} the projection map π_{i} taking $e_{i}^{1 / p^{e}}$ to 1 and $e_{j}^{1 / p^{e}}$ to 0 for $j \neq i$ is an R-module homomorphsim. Hence $r_{i}=\pi_{i}\left(x^{1 / p^{e}}\right) \in I$. Therefore

$$
x^{1 / p^{e}}=r_{1} \cdot e_{1}^{1 / p^{e}}+\cdots+r_{n} \cdot e_{n}^{1 / p^{e}} \in I \cdot R^{1 / p^{e}}=\left(I^{\left[p^{e}\right]}\right)^{1 / p^{e}}
$$

which proves that $x \in I^{\left[p^{e}\right]}$.
The next theorem provides one of our most powerful tools in determining F-purity.

Theorem 2.14. (Fedder's Criterion) Suppose that $S=k\left[x_{1}, \ldots, x_{n}\right]$ and $R=$ S / I for some radical ideal $I \subseteq S$. Then for any $\mathfrak{q} \in \operatorname{Spec} R \subseteq \operatorname{Spec} S, R_{\mathfrak{q}}$ is F-pure if and only if $\left(I^{[p]}: I\right) \nsubseteq \mathfrak{q}^{[p]}$.

The following exercises demonstrate the use of Fedder's Criterion.
Exercise 2.16. The ring $R=\mathbb{F}_{p}[x, y, z] /\left(x^{3}+y^{3}+z^{3}\right)$ is not F-pure for $p=2,3,5,11$, and in general if $p \not \equiv 1 \bmod 3$, and is F-pure for $p=7,13$, and in general if $p \equiv 1 \bmod 3$.

Solution. The algebraic variety $V\left(x^{3}+y^{3}+z^{3}\right)$ has one singular point at the origin, since that is the only place where the partials of $x^{3}+y^{3}+z^{3}$ vanish. Therefore, for any maximal ideal $\mathfrak{m} \neq(x, y, z)$, the ring $R_{\mathfrak{m}}$ is regular, hence F-pure. So now let $\mathfrak{m}=(x, y, z)$, whence $\mathfrak{m}^{[p]}=\left(x^{p}, y^{p}, z^{p}\right)$. Since $\mathfrak{m}^{[p]}$ is a monomial ideal, a polynomial f belongs to $\mathfrak{m}^{[p]}$ if and only if each monomial term of f belongs to $\mathfrak{m}^{[p]}$. Note that $\left(I^{[p]}: I\right)=I^{[p-1]}=\left(\left(x^{3}+y^{3}+z^{3}\right)^{p-1}\right)$.

If $p \equiv 1 \bmod 3$, then $p-1$ is divisible by 3 , and one of the terms of $\left(x^{3}+y^{3}+\right.$ $\left.z^{3}\right)^{p-1}$ is $x^{3 \cdot \frac{p-1}{3}} y^{3 \cdot \frac{p-1}{3}} z^{3 \cdot \frac{p-1}{3}}=x^{p-1} y^{p-1} z^{p-1} \notin \mathfrak{m}^{[p]}$. Therefore $\left(I^{[p]}: I\right) \nsubseteq \mathfrak{m}^{[p]}$, and so $R_{\mathfrak{m}}$ is F-pure. By Exercise 2.10, R is F-pure.

Suppose $p \not \equiv 1 \bmod 3$. Every term of $\left(x^{3}+y^{3}+z^{3}\right)^{p-1}$ is of the form $x^{3 e_{1}} y^{3 e_{2}} z^{3 e_{3}}$, where $e_{1}, e_{2}, e_{3} \in \mathbb{N}$ and $e_{1}+e_{2}+e_{3}=p-1$. Since $p-1$ is not divisible by $3, e_{i}>\frac{p-1}{3}$ for some i. If $e_{1}>\frac{p-1}{3}$, then $3 e_{1}>p-1$, which means $3 e_{1} \geq p$. But this means that $x^{3 e_{1}} y^{3 e_{2}} z^{3 e_{3}} \in\left(x^{p}, y^{p}, z^{p}\right)=\mathfrak{m}^{[p]}$. Similarly, if $e_{2}>\frac{p-1}{3}$ or $e_{3}>\frac{p-1}{3}$, then $x^{3 e_{1}} y^{3 e_{2}} z^{3 e_{3}} \in\left(x^{p}, y^{p}, z^{p}\right)=\mathfrak{m}^{[p]}$. Therefore $\left(\left(x^{3}+y^{3}+z^{3}\right)^{p-1}\right) \subseteq \mathfrak{m}^{[p]}$, and so $R_{\mathfrak{m}}$ is not F-pure. Hence R is not F-pure.

Exercise 2.17. Let $S=\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right], f=x y-z^{2} \in S, g=x^{4}+y^{4}+z^{4} \in S$. Then for all $p, S /(f)$ is F-pure and $S /(g)$ is not F-pure.

Solution. The varieties $S /(f)$ and $S /(g)$ are singular only at the origin, so by an argument similar to the beginning of the previous exercise, we need only check

Fedder's Criterion at the maximal ideal $\mathfrak{m}=(x, y, z)$, which has bracket power $\mathfrak{m}^{[p]}=\left(x^{p}, y^{p}, z^{p}\right)$.

If $I=(f)$, then $I^{[p]}=\left(f^{p}\right)$ and $\left(I^{[p]}: I\right)=\left(f^{p-1}\right)$. But the polynomial $f^{p-1}=\left(x y-z^{2}\right)^{p-1}$ contains the term $x^{p-1} y^{p-1} \notin \mathfrak{m}^{[p]}$, so $f^{p-1} \notin \mathfrak{m}^{[p]}$. Therefore $S /(f)$ is F-pure.

If $I=(g)$, then $I^{[p]}=\left(g^{p}\right)$ and $\left(I^{[p]}: I\right)=\left(g^{p-1}\right)$. Each term of $\left(x^{4}+y^{4}+\right.$ $\left.z^{4}\right)^{p-1}$ is of the form $x^{4 e_{1}} y^{4 e_{2}} z^{4 e_{3}}$ for some $e_{1}, e_{2}, e_{3} \in \mathbb{N}$ with $e_{1}+e_{2}+e_{3}=$ $p-1$. Therefore $e_{i} \geq \frac{p-1}{3}$ for some i. Then $4 e_{i} \geq \frac{4}{3}(p-1)>p-1$, and so $4 e_{i} \geq p$. Hence $x^{4 e_{1}} y^{4 e_{2}} z^{4 e_{3}} \in \mathfrak{m}^{[p]}$, and so $\left(x^{4}+y^{4}+z^{4}\right)^{p-1} \in \mathfrak{m}^{[p]}$. Therefore $\left(I^{[p]}: I\right) \subseteq \mathfrak{m}^{[p]}$, and so $(S /(g))_{\mathfrak{m}}$ is not F-pure. Hence $S /(g)$ is not F-pure.

Exercise 2.18. For any F-pure ring R with fraction field K, if $x \in K$ such that $x^{p} \in R$, then $x \in R$.

Solution. The fraction field K is the ring R localized at the set W of nonzero elements. Let $\varphi: R^{1 / p} \rightarrow R$ be an F-splitting of R. Then $W^{-1} \varphi: W^{-1} R^{1 / p} \rightarrow$ $W^{-1} R$ is a splitting extending φ, and since $W^{-1} R=K$ and $W^{-1} R^{1 / p}=$ $\left(W^{-1} R\right)^{1 / p}=K^{1 / p}, W^{-1} \varphi$ (which we will now write as ϕ) is a splitting for K. Now let $x \in K$ such that $x^{p} \in R$. Then

$$
x=\phi\left(\left(x^{p}\right)^{1 / p}\right) \in \phi\left(R^{1 / p}\right)=\varphi\left(R^{1 / p}\right)=R .
$$

