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Setting: In this paper, all rings are reduced, essentially of finite type over a
field k. To be precise, R = W ™! <[:51,I,x]) for some natural n, (radical)

klx1,..., 5]

ideal I C k[z1,...,z,], and multiplicatively closed subset W C Fi

2 Characteristic p Preliminaries

In section 2, the field k£ has characteristic a prime p > 0 (that is, pk = 0), and
is perfect (that is, kP = k).

2.1 The Frobenius Endomorphism

In characteristic p > 0, the Frobenius map F' : R — R given by F(r) = r? is
an injective ring homomorphism: we have F(rs) = (rs)? = rPs? = F(r)F(s);
Flz+y) = (x+y)P = 2P +y? = F(x) + F(y) since p divides any binomial

k
aP — yP = (z — y)? implies & = y since R is reduced.

Since F' is an injective endomorphism, R is naturally ring-isomorphic to its
image under F. In order to distinguish the domain from the target, we can
relabel the target space as R'/?, and consider it as the “ring of p-th roots of
elements of R.” We will most often treat R'/? as an R-module, with elements
labeled 71/? for r € R and with the action of R on RY? given by s -71/P =
(sPr)1/P. In fact, for any R-module M, we define MP to be the module with
elements m'/? for m € M, addition given by mi/p + mé/p = (my +m2)'/? and
with action given by r - m!? = (rPm)*/?. In particular, if I = (a1,...,aq) C R
is an ideal, then IV/? = (al/?, ... ,alli/p) C RY? (note here that this is an ideal
in the ring R'/P).

The Frobenius map induces a functor Fy on R-modules given by F.(M) =
M'?_ In order to complete the functor definition we need to describe how F,
acts on R-module homomorphisms. Let ¢ : M — N be a homomorphism of

coefficient (p> with 0 < k < p; and if F(x) = F(y), then 2P = yP, s0 0 =



R-modules. We define ¢'/? = F,(¢) € Homg(MY?, N1/?) by ol/P(m!/?) =
©(m)/P. We confirm that this is an R-module homomorphsim by showing it is
compatible with the action of R. Let r € R, then

@' /P (r-m!/P) = MP((1Pm) Py = o(rPm) /P = (rP(m))/P =1 - o(m)'/P,
which is what we wished to show.

Exercise 2.3a. The functor F, is exact.
We give two solutions for this exercise.

Solution 1. Let M be an R-module. Then M'/? is clearly an R'/P-module under
the action 71/7 - m!/P = (r - m)'/P, where the second action is the original R-
action on M. Treating M'/? as an R-module is equivalent to simply restricting
the scalars that may act on M/ to the members of R'/? that are in the image
of F: R — RY?. Since restriction of scalars is an exact functor, so is F. O

Solution 2. We can also prove exactness directly. Let

® P

0 L M N 0

be a short exact sequence of R-modules and consider the sequence obtained by
applying the functor Fi:

Lpl/p wl/:v

0—— LY/P Z s pl/p N/p 0.

Let (/7 € ker p'/P. Then 0Y/7 = o/P(£1/P) = o(£)1/?, s0 (¢) = 0. Since ¢
is injective, £ = 0, so £/? = 0'/7. Hence ¢!/? is injective and the sequence is
exact at L/P.

Let m'/? € M. Then m'/? € im /P if and only if there exists ¢}/P € L/?
with m!/P = /P (g1/P) = w(f)l/p if and only if m € im ¢ = ker(¢) if and only
if Y1/P(ml/P) = w(m)l/p = 07, i.e. m'/? € kery)'/P. Therefore imp'/? =
ker ¢)!/?, and the sequence is exact at M/?.

Let n'/? € NY/P. Choose m € M such that ¢)(m) = n. Then '/?(m!/?) =
w(n)l/p =m!/? and so 1 is surjective and the sequence is exact at N1/P.

Therefore the sequence is exact after applying F, i.e. F} is an exact functor.
O

We can iterate the functor F, as many times as we like. We usually denote
by e the number of times we iterate Fi and call the resulting (exact) functor
F¢. For an R-module M we denote F¢(M) by M'/?". For the case M = R,
we can think of RY?° as the p®th roots of elements in R. The R-action on
MUY is given by r-m!/P" = (r?*m)1/P°. Sometimes, such as when considering
F-purity below, we will be able to show that it doesn’t matter which e we pick
when defining conditions. Other times the value of e will be very important,
and we will even treat certain values as functions of e, such as when studying
Hilbert-Kunz multiplicity.



Exercise 2.3b. Let I C R be an ideal and ¢ > 1. Then (R/I)'/?" and
RY/?°/T'/P" are isomorphic as R-modules.

Solution. The sequence

0 I R R/I 0

is exact. Therefore, by the exactness of F¢, the sequence

0 J/p° R/p¢ (R/I)l/pe )

is also exact. By the first isomorphism theorem, (R/I)"/*" = RV/»" /1V/7° O

Exercise 2.1. Let S = k[x1,...,24). Then S'/?" is a free S-module of rank

ed 3 : A1 A 1/p®

p** with S-basis {(xl cex?) }OSMSpe*l.
Solution. Let f1/P° € S1/P". For any integer d-tuple (A1,...,\g) with 0 < \; <
p® — 1 for all i, denote by f(x, .. x,) the sum of the homogeneous parts of f
where the power of x; is congruent to A\; modulo p® for all i. Then f is the sum
T,
xi\l .. ~x;l\'i
in S with all exponents multiples of p®, hence is a perfect p°th power of some
polynomial g(x,, .. x,). Therefore

of all the f(x, . .a,s- Also, for each such d-tuple, is a polynomial

geany

f= Z T = Z (g(xl,..i,xd))pe(xi\l ), (1)

0<A;<pe—1 0<A;<pe—1

and so

e e 1/p*
P= 3 (o) @)

0= <pe—1

1/p°
> Gounn @)

0<A;<pe—1

1/p° o
Hence the set {(w?l ) /P } generates S'/P° as an S-module.
0<A;<pe—1

Now suppose that f = 0. Then for each d-tuple (n1,...,nq) € N%, we have
that the degree (n1,...,nq) component of the right hand side of equation 1 van-
ishes. For each i we can write n; = p°q; + \; with ¢;, \; € N and \; < p°. The
degree (n1, . ..,nq) component is then the product of the degree (¢, - . ., qq) com-

ponent of g(x, .. x,) and xi‘l ~~-x2d. Hence the degree (¢1,...,qq4) component

of g(x,,...n,) vanishes. This is true for all degrees (ni,...,nq4) € N¢, and hence

all the polynomials g(y, .. x,) are zero. So the set {(mi‘l e x?l‘d)l/p}

.....

0<A;<pe—1
are S-linearly independent, hence an S-basis of S1/7°. O



Exercise 2.1 shows us that the functor F¢ behaves nicely with respect to
polynomial rings, giving a free module. It would be far too much to ask that
this functor would always give a free module when applied to any ring, but in
our setting we at least have finite generation.

Lemma 2.4. R'Y/?" is a finitely generated R-module.
Before proving Lemma 2.4 we prove an auxiliary lemma regarding the inter-
action of localization and Ff.

Lemma A. Let M be an R-module and W C R a multiplicative set. Then
W= (MYPT) = (WﬁlM)l/p as W~ R-modules.

u uP®

Proof. Let o W—l(Ml/pe) N (W_lM)l/pe be given by ¢ (ml/pc) _ ( m )1/pe

e e e pe— . 1/p®
and s (W10 —5 WL (") b given by o ((2)/0°) = 2t

u

Then ¢ is a well-defined W~! R-module homomorphism:

o If mlljpe = ”1:}?6, then for some w € W, 0 = w - (v-m"/?P" —u-n/P") =
(wP" (vP"m — upen))l/p , 80 e = %=, and thus
ml/Pe m \ 1/p° n \1/p° nl/PE
()= =G e ()
u u v v

e
ml/p

u

r m/P . (rpc~m)1/pe _ o\ o (m)l/pe
Y\ U =¥ VU Pyt v \wpt '

Similarly, 1 is a well-defined W~! R-module homomorphism:

o I 2 € WIR, then o (5205 ) = £ (257 ) since

o If (%)1/;,8 = (%)Upe, then for some w € W, w- (v-m—wu-n) =0, and so
w - (v (uP -m)l/p —u- (0P ~n)1/p )
1/p©

e e e e e
:(wp (P uP "t om — P P 1n))

e_1 e_1 e_1 1/1)6
:(wp uP P ~(w~(v~m—u~n))>




o If - € W~IR, then

(") =) )

€
(0P P =Dy 12" ) p

VP
B P 1 (upe—l .m)l/pe
o VP
re(uP" 1 m)l/pe
B VU
(upefl . m)l/Pc
v u

S|I3 S| 3

(")

Now suppose that % e W=1(M'Y?"). Then

bow (mf) —y <(;”)1/)

el e 1/p°¢
(uP (r°-1) -m)
uP®
wP =1 . ml/p°

up*
c
mt/p

u

Similarly, if ()" € (W=1M)""" then

o)) =+ ()

upefl.m 1/pf
-(=)

m\ 1/p°
-0

Therefore ¢ and 1) are inverses of each other, and hence W~ R-module isomor-
phisms. O

We are now ready to prove lemma 2.4.



Proof of Lemma 2.4. We have that R = W~1(S/I) for a polynomial ring S =
klx1,...,24], an ideal I C S, and a multiplicative set W C S/I. We know
that S'/P° is finitely generated as an S-module by Exercise 2.1. Let 5i1/p“~,
i=1,...,m be S-generators of S/?°. Then (S/I)/?" is generated at an S/I-
module by (8 +)Y?", i = 1,...,m: if (f+D)'*" € (S/I)"/"", then there
exist g; € S, i=1,...,n, such that f1/7° = > i - B;*/P° . Therefore

m

D (gi+ 1) (8 + D)V = (g Bi+1)

=1 =1

/ e

Since (S/I)"/*" is finitely generated as an S/I-module, W=1(S/I)*"" is a
finitely generated W~1(S/I)-module. But by Lemma A, W‘l(S/I)l/pe =
(W‘l(S/I))l/pe. So R/P® =~ (W‘l(S/I))l/pc is finitely generated as an R =

~1(S/I)-module. O

So now we ask what it is about polynomial rings that make them special with
regards to the Frobenius functor? The next theorem gives us an explanation.

Theorem 2.5. R is reqular if and only if RY? is a locally free R-module.

2.2 F-purity

We now examine a weaker condition than R'/?" being (locally) free. We will
call a ring F-pure if R is a direct summand of each R'/?" (as R-modules). This
is equivalent to the condition that each inclusion R C R'Y/? is split, i.e. that
there exists an R-module homomorphism s : R/?° — R such that s|lr = idg.
We will call such a homomorphsim an F-splitting of R'/?".

Exercise 2.7. If R is F-pure and M is an R-module, then the natural map
M — M ®r RY?" is injective.

Solution. Since R is F-pure, the short exact sequence of R-modules

0 R RY/P* RYP /R ——=0

is split exact, and hence the functor M ®r — preserves the exact sequence, i.e.
the short exact sequence

0—M@rR=2M —> M®p R'/? ——= M @r RY" /R ——>0



is exact. Therefore the map M — M ®z R'/?" is injective. O

One can use the condition of exercise 2.7 to define the concept of F-purity
for more general classes of rings than we consider in this paper.

Exercise 2.8. If R C R/ is split for some e > 1, then it is split for all e > 1

Solution. Suppose that s : R/P° — R is an F-splitting. Then since R C R'/? C
RYP" | restricting s to R'/P gives an F-splitting of R'/?. So we can assume that
e = 1. Now for d > 1, we have that s'/7*"" : RU/P* 5 R1/P""" ig a splitting of

RYP*™" € RV and so that inclusion is split. Since this applies for all d > 1,
RC RY/P C RUPQ C-.-C Rl/Pd_1 C Rl/Pd’
is a composition of split inclusions, and R C R/ " is therefore split. O

Exercise 2.8 lets us know that in general, to prove that R is F-pure, it suffices
to show that R C RY/? is split.

Exercise 2.9. Suppose R is a domain. If there exists q € Spec R such that R,
is F-pure, then there is an open neighborhood U C Spec R of ¢ such that for all
peU, Ry is F-pure.

Solution. By Lemma 2.4, RY/? is a finitely generated R-module, say with gen-
erators y}/p, e ,yrl/p. Then for any p € Spec R, (Rp)l/p = (Rl/p)p is generated
1

3!71«/})
b 1 M

/P
as an Ry-module by le, . Since R, is F-pure, there exists a splitting

Ly

1/p
s: (RY?)y — R,. For each i, let z; € R, v; € R\ q such that s <yi1 ) =,
U;
Now let U = {p € Spec R|Vi,v; ¢ p} = Spec R\ U V(v;). Then U is open
i=1

since it is the complement of a finite union of closed sets. Furthermore, g € U

since v; ¢ q for all 4, showing that U is a neighborhood of q. Now let p € U and
1/p )

define a function ¢ : (R'/?), — R, by setting ¢ y’T =% and extending R-
Vg

linearly. We need to show that ¢ is well-defined. Suppose that r; € R, u; € R\ p

/P
such that ), 7t . yT =0YP. Let u = uy - - uy, and for all i, let r; =% € R.
Then /

1 1 1

Ol/pzzﬁﬂz ﬁyl/p: 7’T;'y7’/p

—u; 1 —~u 1 U ’

which implies, since R'/? is a domain, that > 7 7/ - yil/p = 0Y/P. Therefore
’ 1/
» i 9 01/P in any localization of RY?_ and so in Ry,
e Y q
noy 1/p L
0=s(0/P) = i =\
o= (S5 47) 542



Hence

[~]=
E
o+
VR
NS
.
bS]
N~
I
3
g3
2|8

=1 =1
n /
_LIsrm
U 1 v
i=1 v
=0.

So t is well-defined. Now let r; € R such that Z?:l r;- yil/p = 1Y/P. Then

1 U y1/p Dryox o SO vy
Z = g(1VP) = LA = e Ui}
R Do S

i=1 i=1

where v = vy - - - v, and rj = 2. Hence ) ;' rjx; = v. So
; -

i=1
—_ Z?:l Tl‘rl
v
_1
1
Therefore ¢ is an F-splitting for R,. This holds for all primes p in U, = Spec R\
U, V(v;), which is an open set in Spec R containing g. O

In a similar vein, we can use the F-purity of localizations of R to conclude
facts about the F-purity of R itself.

Exercise 2.10. If R, is F-pure for each maximal ideal m of R, then R is
F-pure.
We prove an auxiliary lemma before solving exercise 2.10.

Lemma B. R C R'/?" splits if and only if the “evaluation at 1” homomorphsim
¢ : Homp(RYP", R) — R is surjective.

Proof. By exercise 2.8, we can assume e = 1. If R C R'/P gplits, then there
exists a splitting s € Homg(R'?, R). So s(1'/?) = 1, and therefore for any
r € R, r-s € Hompg(RY?P" R) and

o(r-s) = (r-s)1Y?) =r.s(11/?) = 1.



So ¢ is surjective.

If ¢ is surjective, then there exists s € Hompg(R'/?", R) such that s(1'/?) =
©(s) = 1. Therefore s is an F-splitting for R'/P, since for any r € R, the image
of 7 under the inclusion B € RY? is (r?)"/? and s((r?)"/?) = s(r - 11/7) =
r-s(1Y/P) = r. O

Solution to Ezercise 2.10. Let ¢ : Homg(RY?" | R) — R be the evaluation at
1 homomorphism. By lemma B, for each maximal ideal, the function ¢y, :

(Homg(RY?" | R))m = Homp,, (Ri/pe,Rm) — Ry, is surjective. Therefore ¢ is
surjective, and so R is F-pure by lemma B. O

Fedder’s Criterion below is a great test for F-purity in some siutations. To
prepare for the statement we need a few facts about how ideals interact with
Frobenius. By Il we mean the ideal generated by the pth powers of elements

in I; to be precise if I = (a1,...,aq), then TPl = ( fe, ..,ah ).

Exercise 2.12. (I[T’E])l/pe =T1-RYP"
Solution. Suppose I = (aq,...,aq). Then

I-RY? =(ay,...,aq) - RY?

O

Exercise 2.12 proves that 7" is independent of the generators chosen for I,
a fact that is not immediately apparent.

Exercise 2.13. Suppose that R is a regular local ring and I C R is an ideal.
If x € R, then € I'P"] if and only if ¢(x'/?") € I for all ¢ € Homg(RY?", R).

Solution. Suppose I = (a1, ...,aq). Forany r; € R, and any ¢ € Homp(RY?", R),

d 1/p° d d
10) (Zriafe> =¢<Zai-ril/p/>=Zai~¢(ril/p<)el,
i=1 i=1 i=1



which proves the forward direction. Now suppose that x € R such that qﬁ(wl/ pe) €
I forall ¢ € HomR(Rl/pe , R). Since R is regular local, Theorem 2.5 gives us that

RYP" is a (finitely generated) free R-module. Let e}/pe, cey ex/” be an R-basis
for RY/?°. Then there exist r; € R such that 2/P° = ry ~ei/pe SRR P e}/pe.
For each generator e; the projection map m; taking eg/pe to 1 and e;/pe to 0 for
j # i is an R-module homomorphsim. Hence r; = 7; (xl/ pc) € I. Therefore

1/p® 1/p®

xl/pe =ri-el oy, e}}/pe c ]-Rl/pe _ (I[pe])

which proves that = € I1P"). O

The next theorem provides one of our most powerful tools in determining
F-purity.

Theorem 2.14. (Fedder’s Criterion) Suppose that S = k[z1,...,2,] and R =
S/I for some radical ideal I C S. Then for any q € Spec R C Spec S, Ry is
F-pure if and only if (I" : 1) Z Il

The following exercises demonstrate the use of Fedder’s Criterion.

Exercise 2.16. The ring R = F,[z,y,2]/(z® + v + 23) is not F-pure for
p=2,3,511, and in general if p Z 1 mod 3, and is F-pure for p = 7,13, and
in general if p=1 mod 3.

Solution. The algebraic variety V(23 + 3® + 23) has one singular point at the
origin, since that is the only place where the partials of 22 + y3 + 23 vanish.
Therefore, for any maximal ideal m # (z,y, 2z), the ring Ry, is regular, hence
F-pure. So now let m = (2,7, z), whence m/P! = (zP y? 2P). Since mlP! is a
monomial ideal, a polynomial f belongs to mP! if and only if each monomial
term of f belongs to m/?. Note that (IP): I) = 1P~ = ((2® + 3 + 23)P~1).

If p=1 mod 3, then p—1 is divisible by 3, and one of the terms of (23 +y>+
2Pl A T e T Y P ¢ mPl. Therefore (I : I) Z mlP],
and so Ry, is F-pure. By Exercise 2.10, R is F-pure.

Suppose p Z 1 mod 3. Every term of (23 + y + 23)P~1 is of the form
x3e1y3e2 3¢ wwhere ey,eq,e3 € N and e; + ey +e3 = p— 1. Since p — 1 is
not divisible by 3, e¢; > % for some i. If e; > %, then 3e; > p — 1,
which means 3e; > p. But this means that z3¢1y3¢223¢s ¢ (2P yP, 2P) = mlPl,

Similarly, if e3 > ’)3;1 or ez > =L then ze1yse2z3s ¢ (2P, yP 2P) = mlPl,
Therefore ((333 + 93 + zS)T’_l) C ml?l, and so Ry, is not F-pure. Hence R is not
F-pure. O

Exercise 2.17. Let S =F[z1,...,3,), f=ay—22€ S, g=a* +y* +21 € S.
Then for all p, S/(f) is F-pure and S/(g) is not F-pure.

Solution. The varieties S/(f) and S/(g) are singular only at the origin, so by an
argument similar to the beginning of the previous exercise, we need only check

10



Fedder’s Criterion at the maximal ideal m = (z,y, z), which has bracket power
mlPl = (2P, 9P 2P).

If I = (f), then Il = (fP) and (IP! : I) = (f»~1). But the polynomial
fP~1 = (zy — 2%)P~! contains the term zP~'y?~! ¢ ml?l so fP=1 ¢ m[Pl. There-
fore S/(f) is F-pure.

If I = (g), then Il = (g?) and (I'") : I) = (g~ 1). Each term of (z* + y* +
24)P~1 is of the form z?¢1y?e224¢ for some eq,e2,e3 € N with e; + e3 + e3 =
p — 1. Therefore e; > % for some i. Then 4e; > %(p —1) > p—1, and so
4e; > p. Hence z*¢1y*e224¢ ¢ mlPl and so (z* + y* + 2*)P~! € m[Pl. Therefore

(1) 1) C mlP!) and so (S/(g))m is not F-pure. Hence S/(g) is not F-pure. [

Exercise 2.18. For any F-pure ring R with fraction field K, if z € K such
that 2P € R, then x € R.

Solution. The fraction field K is the ring R localized at the set W of nonzero
elements. Let ¢ : RY/? — R be an F-splitting of R. Then W~y : W-1RY? —
W-IR is a splitting extending ¢, and since W™ 'R = K and W 'RV? =
(W-1R)"/P = K/, W~1¢ (which we will now write as ¢) is a splitting for K.
Now let z € K such that 2 € R. Then

x = ¢((a?)"'?) € $(RY?) = p(RY?) = R. O
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