A Study of The Paper "A Survey of Test Ideals" by Karl Schwede and Kevin Tucker
 William Taylor
 University of Arkansas

Disclaimer: These notes are not guaranteed to be complete or error-free, but are desinged to be a resource for other students wishing to explore the wonderful world of positive characteristic. Please send any comments or corrections to wdtaylor@uark.edu. These notes are hosted at www.wdtaylor.net/papers.

3 The Test Ideal

In this section, all rings are domains essentially finite type over a perfect field k of characteristic $p>0$.

3.1 Test ideals of map-pairs

We begin by defining an ideal that caputes information about the ring R and an R-module homomorphism. For $\phi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$, let $\tau(R, \phi)$ be the smallest nonzero ideal J such that $\phi\left(J^{1 / p^{e}}\right) \subseteq J$. It is nonobvious that such an ideal exists, but we will have a method of constructing it. If an ideal $I \subseteq R$ is such that $\phi\left(I^{1 / p^{e}}\right) \subseteq I$, we say that I is ϕ-compatible.

Exercise 3.3. $\phi\left(\tau(R, \phi)^{1 / p^{e}}\right)=\tau(R, \phi)$.
Solution. By definition, $\tau(R, \phi)$ is ϕ-compatible, so $\phi\left(\tau(R, \phi)^{1 / p^{e}}\right) \subseteq \tau(R, \phi)$. Applying F_{*}^{e} and then ϕ to both sides, we get that

$$
\phi\left(\left(\phi\left(\tau(R, \phi)^{1 / p^{e}}\right)\right)^{1 / p^{e}}\right) \subseteq \phi\left(\tau(R, \phi)^{1 / p^{e}}\right),
$$

proving that $\phi\left(\tau(R, \phi)^{1 / p^{e}}\right)$ is ϕ-compatible. Hence $\tau(R, \phi) \subseteq \phi\left(\tau(R, \phi)^{1 / p^{e}}\right)$, and so the two are equal.

Exercise 3.4. Suppose that $\phi: R^{1 / p^{e}} \rightarrow R$ is surjective. Then $\tau(R, \phi)$ is radical and $R / \tau(R, \phi)$ is F-pure.

Solution. Suppose $x \in R$ such that $x^{p^{e}} \in \tau(R, \phi)$. Then since ϕ is surjective,
$x \in x \cdot \phi\left(R^{1 / p^{e}}\right)=\phi\left(x \cdot R^{1 / p^{e}}\right)=\phi\left(\left(x^{p^{e}} R\right)^{1 / p^{e}}\right) \subseteq \phi\left(\tau(R, \phi)^{1 / p^{e}}\right)=\tau(R, \phi)$.

Now for any $n \geq 1$, suppose $x^{n} \in \tau(R, \phi)$. Then $n<p^{e c}$ for some $c \in \mathbb{N}$, and so $x^{p^{e c}} \in \tau(R, \phi)$, which implies that $x^{p^{e(c-1)}} \in \tau(R, \phi)$, and proceeding for c steps, $x=x^{p^{e \cdot 0}} \in \tau(R, \phi)$, and so $\tau(R, \phi)$ is radical.

Let $d \in R$ such that $\phi\left(d^{1 / p^{e}}\right)=1$. Let $\psi: R^{1 / p^{e}} \rightarrow R / \tau(R, \phi)$ be given by $\phi\left(r^{1 / p^{e}}\right)=\phi\left((d r)^{1 / p^{e}}\right)+\tau(R, \phi)$. Since $\phi\left((d \tau(R, \phi))^{1 / p^{e}}\right) \subseteq \tau(R, \phi)$, we have that $\tau(R, \phi)^{1 / p^{e}} \subseteq$ ker ψ. Therefore we can construct $\bar{\psi}: R^{1 / p^{e}} / \tau(R, \phi)^{1 / p^{e}} \rightarrow$ $R / \tau(R, \phi)$ given by $\bar{\psi}\left(r^{1 / p^{e}}+\tau(R, \phi)^{1 / p^{e}}\right)=\psi\left(r^{1 / p^{e}}\right)$. Now

$$
\bar{\psi}\left(1^{1 / p^{e}}+\tau(R, \phi)^{1 / p^{e}}\right)=\psi\left(1^{1 / p^{e}}\right)=\phi\left(d^{1 / p^{e}}\right)=1+\tau(R, \phi) .
$$

Therfore $\bar{\psi}$ is an F-splitting for $R / \tau(R, \phi)$.

Exercise 3.5. Suppose that $R=\mathbb{F}_{2}[x, y]$, then $R^{1 / 2}=R \oplus R \cdot x^{1 / 2} \oplus R \cdot y^{1 / 2} \oplus$ $R \cdot(x y)^{1 / 2}$.

Part a) Let $\alpha: R^{1 / 2} \rightarrow R$ be given by $\alpha\left((x y)^{1 / 2}\right)=1$ and $\alpha(1)=\alpha\left(x^{1 / 2}\right)=$ $\alpha\left(y^{1 / 2}\right)=0$. Then $\tau(R, \alpha)=R$.

Solution. For a monomial $x^{m} y^{n} \in R, \alpha\left(x^{m} y^{n}\right)$ is $x^{(m-1) / 2} y^{(n-1) / 2}$ (with degree $\frac{m+n}{2}-1$) if m and n are odd and 0 otherwise. In particular, if $f \neq 0$ has degree d, then $\alpha\left(f^{1 / 2}\right)$ is either zero or nonzero of degree less than or equal to $\frac{d}{2}-1<d$. Let J be a nonzero ideal of R and let $f \in J$ be a nonzero polynomial in J of minimal degree d.

If $\alpha\left(f^{1 / 2}\right) \neq 0$, then $\alpha\left(f^{1 / 2}\right)$ is of degree less than the degree of f, so is not in J, hence J is not α-compatible.

If $\alpha\left(f^{1 / 2}\right)=0$, then all terms of f are of the form $x^{m} y^{n}$ with m and n not both odd. Therefore either $x f, y f$, or $x y f$ has a term with the powers on x and y both odd, call such a multiple g. Then $g \in J, \alpha\left(g^{1 / 2}\right) \neq 0$, and the degree of g is at most $d+2$. Therefore $\alpha\left(g^{1 / 2}\right)$ has degree at most $\frac{d+2}{2}-1=\frac{d}{2}$. If $d>0$, then $\frac{d}{2}<d$ and so $\alpha\left(g^{1 / 2}\right) \notin J$, so J is not α-compatible. If $d=0$, then f is a constant and $J=R$. Therefore the only nonzero α-compatible ideal of R is R, and so $\tau(R, \phi)=R$.

Part b) Let $\beta: R^{1 / 2} \rightarrow R$ be given by $\beta\left(x^{1 / 2}\right)=1$ and $\beta(1)=\beta\left(y^{1 / 2}\right)=$ $\beta\left((x y)^{1 / 2}\right)=0$. Then $\tau(R, \beta)=(y)$.

Solution. For a monomial $x^{m} y^{n} \in R, \beta\left(x^{m} y^{n}\right)$ is $x^{(m-1) / 2} y^{n / 2}$ (with degree $\frac{m+n-1}{2}$) if m is odd and n is even and 0 otherwise. In particular, if $f \neq 0$ has degree d, then $\beta\left(f^{1 / 2}\right)$ is either zero or nonzero of degree at most $\frac{d-1}{2}<d$. Let J be a nonzero ideal of R and let $f \in J$ be a nonzero polynomial in J of minimal degree d.

If $\beta\left(f^{1 / 2}\right) \neq 0$, then $\beta\left(f^{1 / 2}\right)$ is of degree less than the degree of f, so is not in J, hence J is not β-compatible.

If $\beta\left(f^{1 / 2}\right)=0$, then all terms of f are of the form $x^{m} y^{n}$ with either m even or n odd. Therefore either $x f, y f$, or $x y f$ has a term with the power on x odd and the power on y even.

Suppose that $x f$ or $y f$ has some term with the power on x odd and the power on y even and call this multiple g. Then $g \in J, \beta\left(g^{1 / 2}\right) \neq 0$, and the degree of g is $d+1$. Therefore $\beta\left(g^{1 / 2}\right)$ has degree at most $\frac{d+1-1}{2}=\frac{d}{2}$. If $d>0$, then $\frac{d}{2}<d$ and so $\beta\left(g^{1 / 2}\right) \notin J$, so J is not β-compatible. If $d=0$, then f is a constant and $J=R$.

Now suppose that neither $x f$ or $y f$ has some term with the power on x odd and the power on y even. Then every term of f must have even power on x and odd power on y. In this case $x y f$ has all terms with the power on x even and the power on y odd, call this multiple g. Then the degree of g is $d+2$. Then $\beta\left(g^{1 / 2}\right)$ has degree at most $\frac{d+2-1}{2}=\frac{d+1}{2}$. If $d>1$, then $\frac{d+1}{2}<d$, and so $\beta\left(g^{1 / 2}\right) \notin J$, so J is not β-compatible. If $d=1$, then since every power of f must have even power on x and odd power on y we must have that $f=y$. Therefore if J is a proper β-compatible ideal then J must contain y.

We finish by showing that (y) is β-compatible. Suppose $f \in(y)$. Then the terms of $f^{1 / 2}$ that are not killed by β are the ones that have odd degree in x and the even degree at least 2 in y, call the sum of the terms of this form g. Then we can write $g=y^{2} h$ for some $h \in \mathbb{F}_{2}[x, y]$. So $\beta\left(f^{1 / 2}\right)=\beta\left(\left(y^{2} h\right)^{1 / 2}\right)=$ $\beta\left(y \cdot h^{1 / 2}\right)=y \beta\left(h^{1 / 2}\right) \in(y)$. So (y) is β-compatible.

Therefore $\tau(R, \beta)=(y)$.
Part c) Let $\gamma: R^{1 / 2} \rightarrow R$ be given by $\gamma\left(1^{1 / 2}\right)=1$ and $\beta\left(x^{1 / 2}\right)=\beta\left(y^{1 / 2}\right)=$ $\beta\left((x y)^{1 / 2}\right)=0$. Then $\tau(R, \gamma)=(x y)$.

Solution. For a monomial $x^{m} y^{n} \in R, \gamma\left(x^{m} y^{n}\right)$ is $x^{m / 2} y^{n / 2}$ (with degree $\frac{m+n}{2}$) if m and n are even and 0 otherwise. In particular, if $f \neq 0$ has degree d, then $\gamma\left(f^{1 / 2}\right)$ is either zero or nonzero of degree at most $\frac{d}{2}$. Let J be a nonzero ideal of R and let $f \in J$ be a nonzero polynomial in J of minimal degree d.

If $\gamma\left(f^{1 / 2}\right) \neq 0$, then $\gamma\left(f^{1 / 2}\right)$ is of degree $\frac{d}{2}$. If $d>0$, then this is less than the degree of f, so $\gamma\left(f^{1 / 2}\right)$ is not in J, hence J is not γ-compatible. If $d=0$, then f is a constant, so $J=R$.

If $\gamma\left(f^{1 / 2}\right)=0$, then all terms of f are of the form $x^{m} y^{n}$ with m and n not both even. Therefore either $x f, y f$, or $x y f$ has a term with the powers on x and y both even.

Suppose that $x f$ or $y f$ has some term with the powers on x and y both even and call this multiple g. Then $g \in J, \gamma\left(g^{1 / 2}\right) \neq 0$, and the degree of g is $d+1$. Therefore $\gamma\left(g^{1 / 2}\right)$ has degree at most $\frac{d+1}{2}$. If $d>1$, then $\frac{d}{2}<d$ and so $\gamma\left(g^{1 / 2}\right) \notin J$, so J is not γ-compatible. If $d=1$, then $f=x$ or $f=y$, and so $x y \in J$. The case $d=0$ is impossible.

Now suppose that neither $x f$ or $y f$ has some term with the powers on x and y both even. Then every term of f must have odd powers on x and y. In this case $x y f$ has all terms with the powers on x and y both even, call this multiple g. Then the degree of g is $d+2$, and $\gamma\left(g^{1 / 2}\right)$ has degree at most (in fact exactly) $\frac{d+2}{2}$. If $d>2$, then $\frac{d+1}{2}<d$, and so $\gamma\left(g^{1 / 2}\right) \notin J$, so J is not β-compatible. The cases $d=0$ and $d=1$ are impossible. If $d=2$, then since every power of f must have odd powers on x and y we must have that $f=x y$. Therefore if J is a proper γ-compatible ideal then J must contain $x y$.

We finish by showing that ($x y$) is γ-compatible. Suppose $f \in(x y)$. Then the terms of $f^{1 / 2}$ that are not killed by γ are the ones that have even degrees at least 2 in x and y, call the sum of the terms of this form g. Then we can write $g=x^{2} y^{2} h$ for some $h \in \mathbb{F}_{2}[x, y]$. So $\gamma\left(f^{1 / 2}\right)=\gamma\left(\left(x^{2} y^{2} h\right)^{1 / 2}\right)=\gamma\left(x y \cdot h^{1 / 2}\right)=$ $x y \gamma\left(h^{1 / 2}\right) \in(x y)$. So $(x y)$ is γ-compatible.

The question of whether such an ideal $\tau(R, \phi)$ exists is answered in the affirmative by Lemma 3.6 and Theorem 3.8.

Lemma 3.6. Suppose that $\phi: R^{1 / p} \rightarrow R$ is a nonzero R-module homomorphism. Then there exists nonzero $c \in R$ such that for all nonzero $d \in R$, there exists $n>0$ such that $c \in \phi^{n}\left((d R)^{1 / p^{n e}}\right)$.

In the above lemma, ϕ^{n} is the composition

We call an element c satisfying the conditions of Lemma 3.6 a test element for ϕ.

Theorem 3.8. Fix any $c \in R$ a test element for ϕ. Then

$$
\tau(R, \phi)=\sum_{e \geq 0} \phi^{n}\left((c R)^{1 / p^{n e}}\right)
$$

Here, by ϕ^{0} we mean the identity map $R \rightarrow R$.
Proof. Let $T=\sum_{e \geq 0} \phi^{n}\left((c R)^{1 / p^{n e}}\right)$. Now $\phi\left(T^{1 / p}\right)=\sum_{e \geq 1} \phi^{n}\left((c R)^{1 / p^{n e}}\right)$, so T is ϕ-compatible. If I is any ϕ-compatible ideal, then there exists a nonzero $d \in I$, and so since c satisfies the condition of Lemma 3.6, there exists $n \in \mathbb{N}$ such that $c \in \phi^{n}\left((d R)^{1 / p^{n e}}\right)$. But also,

$$
\phi^{n}\left((d R)^{1 / p^{n e}}\right) \subseteq \phi^{n}\left(I^{1 / p^{n e}}\right) \subseteq \phi^{n-1}\left(I^{1 / p^{(n-1) e}}\right) \subseteq \cdots \subseteq \phi\left(I^{1 / p^{e}}\right) \subseteq I
$$

and so $c \in I$. But then for any $n \in \mathbb{N}, \phi^{n}\left((c R)^{p^{n e}}\right) \subseteq \phi^{n}\left(I^{1 / p^{n e}}\right) \subseteq I$ as above. Therefore $T \subseteq I$. Therefore T is the smallest ϕ-compatible ideal of R, i.e. $T=\tau(R, \phi)$.

Exercise 3.9. $\tau(R, \phi)=\tau\left(R, \phi^{m}\right)$ for any $m>0$.
Solution. Let $c \in R$ be a test element for ϕ^{m}. Let $0 \neq d \in R$, and choose $n>0$ such that $c \in\left(\phi^{m}\right)^{n}\left((d R)^{1 / p^{m n e}}\right)=\phi^{m n}\left((d R)^{1 / p^{m n e}}\right)$. Therefore c is a test element for ϕ.

We have that

$$
\tau(R, \phi)=\sum_{e \geq 0} \phi^{n}\left((c R)^{1 / p^{n e}}\right) \text { and } \tau\left(R, \phi^{m}\right)=\sum_{e \geq 0} \phi^{m n}\left((c R)^{1 / p^{m n e}}\right)
$$

Since every term in the sum for $\tau\left(R, \phi^{m}\right)$ is also a term of the sum for $\tau(R, \phi)$, we have that $\tau\left(R, \phi^{m}\right) \subseteq \tau(R, \phi)$.

We claim that for all $n, \phi^{n}\left((c R)^{1 / p^{n e}}\right)$ contains a nonzero element. Let $k \in \mathbb{N}$ such that $c \in \phi^{k}\left((c R)^{1 / p^{e}}\right)$. Then

$$
c R \subseteq \phi^{k}\left((c R)^{1 / p^{e}}\right) \subseteq \phi^{2 k}\left((c R)^{1 / p^{2 k}}\right) \subseteq \cdots,
$$

so for any $j \in \mathbb{N}, c \in \phi^{k j}\left((c R)^{1 / p^{k j e}}\right)$ and so $\phi^{k j}\left((c R)^{1 / p^{k j e}}\right) \neq 0$. Now for any $n \in \mathbb{N}$, there exists $j \in \mathbb{N}$ such that $k j>n$, and so since

$$
0 \neq \phi^{k j}\left((c R)^{1 / p^{k j e}}=\phi^{k j-n}\left(\left(\phi^{n}\right)^{1 / p^{(k j-n) e}}\left((c R)^{1 / p^{n e}}\right)\right)\right.
$$

we must have that $\phi^{n}\left((c R)^{1 / p^{n e}}\right) \neq 0$.
Therefore we can pick $0 \neq d_{j} \in \phi^{j}\left((c R)^{/ 1 p^{j e}}\right)$ for $j=1,2, \ldots, m$. Let $d=\prod_{i} d_{i}$. Then $d \in \phi^{j}\left((c R)^{/ 1 p^{j e}}\right)$ for $j=1,2, \ldots, m$. Let $n \in \mathbb{N}$, and choose $k \in \mathbb{N}$ such that $c \in \phi^{k}\left((d R)^{1 / p^{k e}}\right.$. Then pick j in $\{1, \ldots, m\}$ such that $n+k+j \equiv 0 \bmod m$. Now

$$
\phi^{n}\left((c R)^{1 / p^{n e}}\right) \subseteq \phi^{n+k}\left((d R)^{1 / p^{\left(n_{k}\right) e}}\right) \subseteq \phi^{n+k+j}\left((c R)^{1 / p^{(n+k+j) e}},\right.
$$

but the term on the right is a summand of $\tau\left(R, \phi^{m}\right)$. Therefore $\phi^{n}\left((c R)^{1 / p^{n e}}\right) \subseteq$ $\tau\left(R, \phi^{m}\right)$, and since n was arbitrary, this shows that $\tau(R, \phi) \subseteq \tau\left(R, \phi^{m}\right)$.

Exercise 3.10. If W is a multiplicative system of R and $\phi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$, then $\tau\left(W^{-1} R, W^{-1} \phi\right)=W^{-1} \tau(R, \phi)$.
Solution. Let $c \in R$ be a test element for ϕ. Let $0 \neq \frac{d}{u} \in\left(W^{-1} R\right)$. Then $d \neq 0$, and so there exists $n \in \mathbb{N}$ such that $c \in \phi^{n}\left((d R)^{1 / p^{n e}}\right)$. Then

$$
\begin{aligned}
& \left(W^{-1} \phi\right)^{n}\left(\left(\frac{d}{u} \cdot W^{-1} R\right)^{1 / p^{n e}}\right) \\
= & \left(W^{-1} \phi\right)^{n}\left(\left(W^{-1}(d R)\right)^{1 / p^{n e}}\right) \\
= & \left(W^{-1} \phi\right)^{n}\left(W^{-1}(d R)^{1 / p^{n e}}\right) \\
= & W^{-1} \phi^{n}\left((d R)^{1 / p^{n e}}\right) \\
\ni & \ni \frac{c}{1} .
\end{aligned}
$$

Therefore $\frac{c}{1}$ is a test element for W^{-1}. Hence,

$$
\begin{aligned}
\tau\left(W^{-1} R, W^{-1} \phi\right) & =\sum_{n \geq 0}\left(W^{-1} \phi\right)^{n}\left(\left(\frac{c}{1} \cdot W^{-1} R\right)^{1 / p^{n e}}\right) \\
& =\sum_{n \geq 0}\left(W^{-1} \phi\right)^{n}\left(W^{-1}(c R)^{1 / p^{n e}}\right) \\
& =\sum_{n \geq 0} W^{-1} \phi^{n}\left((c R)^{1 / p^{n e}}\right) \\
& =W^{-1} \sum_{n \geq 0} \phi^{n}\left((c R)^{1 / p^{n e}}\right) \\
& =W^{-1} \tau(R, \phi) .
\end{aligned}
$$

Exercise 3.11. Let c be a test element for $\phi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$, let $J_{0}=c R$ and for $n \geq 1, J_{n}=J_{n-1}+\phi\left(J_{n-1}^{1 / p^{e}}\right)$. Then for $n \gg 0, J_{n}=\tau(R, \phi)$.

Solution. Note that the chain of ideals $J_{0} \subseteq J_{1} \subseteq \cdots$ is increasing. Therefore, since R is noetherian, $J_{n}=J_{n+1}=\cdots$ for some $n>0$. Therefore $J_{n}=$ $J_{n}+\phi\left(J_{n}{ }^{1 / p^{e}}\right)$ and therefore $\phi\left(J_{n}^{1 / p^{e}}\right) \subseteq J_{n}$, i.e. J_{n} is ϕ-compatible. Hence $J_{n} \supseteq \tau(R, \phi)$.

Now $J_{0}=c R \subseteq \tau(R, \phi)$, and $\tau(R, \phi)$ is ϕ-compatible. If $J_{k} \subseteq \tau(R, \phi)$, then

$$
J_{k+1}=J_{k}+\phi\left(J_{k}^{1 / p^{e}}\right) \subseteq \tau(R, \phi)+\phi\left(\tau(R, \phi)^{1 / p^{e}}\right)=\tau(R, \phi) .
$$

Therefore, by induction, $J_{n} \subseteq \tau(R, \phi)$, and so $J_{n}=\tau(R, \phi)$.

3.2 Test ideals of rings

We can define an ideal depending only on the ring structure of R by simultaineously considering all homomorphisms $\phi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$. To be precise, we define the test ideal of R, denoted $\tau(R)$, to be the smallest nonzero ideal J such that $J \subseteq \phi\left(J^{1 / p^{e}}\right)$ for all $e \geq 0$ and $\phi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$.

Exercise 3.13. If $S=k\left[x_{1}, \ldots, x_{n}\right]$, then $\tau(S)=S$.
Solution. We will show that if J is any nonzero ideal of S then there exists $e \geq 0$ and $\phi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$ such that $\phi\left(J^{1 / p^{e}}\right)=S$, which will prove the statement. Let J be a nonzero ideal of S, and let $0 \neq f \in J$. Choose $e>0$ such that p^{e} is greater than the highest power of any single variable that appears in f. By exercise 2.1, $S^{1 / p^{e}}$ is a free S-module with basis $x_{1}^{\lambda_{1} / p^{e}} \cdots x_{n}^{\lambda_{n} / p^{e}}$ for $0 \leq \lambda_{i} \leq p^{e}-1$. Then the monomials of $f^{1 / p^{e}}$ are S-linearly independent in $S^{1 / p^{e}}$. Choose an exponenet vector $\left(\ell_{1}, \ldots, \ell_{n}\right)$ such that the coefficient of $x_{1}^{\ell_{1}} \cdots x_{n}^{\ell_{n}}$ is $a_{\ell} \neq 0$. Let $\phi: S^{1 / p^{e}} \rightarrow S$ be given by $\phi\left(x_{1}^{\ell_{1} / p^{e}} \cdots x_{n}^{\ell_{n} / p^{e}}\right)=\frac{1}{a_{\ell}}$ and $\phi\left(x_{1}^{\lambda_{1} / p^{e}} \cdots x_{n}^{\lambda_{n} / p^{e}}\right)=0$ for $\left(\lambda_{1}, \ldots, \lambda_{n}\right) \neq\left(\ell_{1}, \ldots, \ell_{n}\right)$. Then $\phi\left(f^{1 / p^{e}}\right)=1$, and so $\phi\left(J^{1 / p^{e}}\right)=S$.

We have an explicit construction of $\tau(R)$ as we did for $\tau(R, \phi)$.
Theorem 3.14. Fix any $\phi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$ and c a test element for ϕ. Then

$$
\tau(R)=\sum_{e \geq 0} \sum_{\psi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)} \psi\left((c R)^{1 / p^{e}}\right)
$$

Proof. Let J be any nonzero ideal of R for which $\psi\left(J^{1 / p^{e}}\right) \subseteq J$ for all $e \geq 0$ and $\psi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$. Let $0 \neq d \in J$, then there exists $n \in \mathbb{N}$ such that

$$
c=\phi^{n}\left((d R)^{1 / p^{n e}}\right) \subseteq \phi^{n}\left(J^{1 / p^{n e}}\right) \subseteq J
$$

Therefore $c \in J$, and so

$$
\begin{aligned}
& \sum_{e \geq 0} \sum_{\psi \in \operatorname{Hom}_{R}\left(R^{\left.1 / p^{e}, R\right)}\right.} \psi\left((c R)^{1 / p^{e}}\right) \\
\subseteq & \sum_{e \geq 0} \sum_{\psi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)} \psi\left(J^{1 / p^{e}}\right) \\
\subseteq & \sum_{e \geq 0} \sum_{\psi \in \operatorname{Hom}_{R}\left(R^{\left.1 / p^{e}, R\right)}\right.} J \\
= & J
\end{aligned}
$$

Therefore the given sum is indeed $\tau(R)$.

Exercise 3.15. For any multiplicative system W of $R, \tau\left(W^{-1} R\right)=W^{-1} \tau(R)$.
Solution. As in exercise 3.10, for a fixed $e \geq 0$ and $\phi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$, if c is a test element for ϕ then $\frac{c}{1}$ is a test element for $W^{-1} \phi \in \operatorname{Hom}_{W^{-1} R}\left(\left(W^{-1} R\right)^{1 / p^{e}}, W^{-1} R\right)$.
Let $H=\operatorname{Hom}_{W^{-1} R}\left(\left(W^{-1} R\right)^{1 / p^{e}}, W^{-1} R\right)$. Then

$$
\begin{aligned}
\tau\left(W^{-1} R\right) & =\sum_{e \geq 0} \sum_{W^{-1} \psi \in H}\left(W^{-1} \psi\right)\left(\left(\frac{c}{1} \cdot W^{-1} R\right)^{1 / p^{e}}\right) \\
& =\sum_{e \geq 0} \sum_{W^{-1} \psi \in H}\left(W^{-1} \psi\right)\left(W^{-1}(c R)^{1 / p^{e}}\right) \\
& =\sum_{e \geq 0} \sum_{\psi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)} W^{-1} \psi\left((c R)^{1 / p^{e}}\right) \\
& =W^{-1} \sum_{e \geq 0} \sum_{\psi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)} \psi\left((c R)^{1 / p^{e}}\right) \\
& =W^{-1} \tau(R) .
\end{aligned}
$$

Exercise 3.17. Suppose that R is F-pure. Then $\tau(R)$ is radical and $R / \tau(R)$ is F-pure.

Solution. There exists a splitting $\phi: R^{1 / p} \rightarrow R$ of the inclusion $R \subseteq R^{1 / p}$. Suppose that $x \in R$ such that $x^{1 / p} \in \tau(R)$. Then

$$
x=\phi\left(\left(x^{p}\right)^{1 / p}\right) \subseteq \phi\left(\tau(R)^{1 / p}\right) \subseteq \tau(R)
$$

Therefore $\tau(R)$ is radical.
Define $\psi: R^{1 / p} \rightarrow R / \tau(R)$ by $\psi\left(r^{1 / p}\right)=\phi\left(r^{1 / p}\right)+\tau(R)$. Then $r^{1 / p} \in$ ker ψ if and only if $\phi\left(r^{1 / p}\right) \in \tau(R)$, and so we have that $\operatorname{ker} \psi \supseteq \tau(R)^{1 / p}$ since $\phi\left(\tau(R)^{1 / p}\right) \subseteq \tau(R)$. Therefore we can construct $\bar{\psi}: R^{1 / p} / \tau(R)^{1 / p} \rightarrow R / \tau(R)$ as $\bar{\psi}\left(r^{1 / p}+\tau(R)^{1 / p}\right)=\psi\left(r^{1 / p}\right)$. Now

$$
\bar{\psi}\left(1^{1 / p}+\tau(R)^{1 / p}\right)=\psi\left(1^{1 / p}\right)=\phi\left(1^{1 / p}\right)+\tau(R)=1+\tau(R),
$$

so $\bar{\psi}$ is an F-splitting of $R / \tau(R)$.

Exercise 3.18. Suppose R is reduced and let R^{N} be its normalization. Let \mathfrak{c} be the conductor of R in R^{N}, that is, $\mathfrak{c}=\operatorname{Ann}_{R}\left(R^{N} / R\right)=\left(R:_{R} R^{N}\right)(\mathfrak{c}$ can also be described as the largest ideal of R^{N} which is also an ideal of R). Then $\tau(R) \subseteq \mathfrak{c}$.

Solution. Let $e \geq 0$ and $\phi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$. Take $\frac{r}{s} \in R^{N}$ and $x \in \mathfrak{c}$. Then $\frac{r}{s}$ has an equation of integral dependence

$$
\left(\frac{r}{s}\right)^{n}+a_{1}\left(\frac{r}{s}\right)^{n-1}+\cdots+a_{n-1}\left(\frac{r}{s}\right)+a_{n}=0
$$

with $a_{i} \in R$. Raising this to the p^{e} th power gives us an equation of integral dependence for $\frac{r^{p^{e}}}{s^{p^{e}}}$:

$$
\left(\frac{r^{p^{e}}}{s^{p^{e}}}\right)^{n}+a_{1}^{p^{e}}\left(\frac{r^{p^{e}}}{s^{p^{e}}}\right)^{n-1}+\cdots+a_{n-1}^{p^{e}}\left(\frac{r^{p^{e}}}{s^{p^{e}}}\right)+a_{n}^{p^{e}}=0 .
$$

Since $x \in\left(R:_{R} R^{N}\right)$, we have that $\frac{x r^{p^{e}}}{s^{p^{e}}} \in R$, i.e. $x r^{p^{e}}=x^{\prime} s^{p^{e}}$ for some $x^{\prime} \in R$. Therefore,

$$
\phi\left(x^{1 / p^{e}}\right) \frac{r}{s}=\phi\left(\left(x r^{p^{e}}\right)^{1 / p^{e}}\right) \frac{1}{s}=\phi\left(\left(x^{\prime} s^{p^{e}}\right)^{1 / p^{e}}\right) \frac{1}{s}=\phi\left(x^{1 / p^{e}}\right) \frac{s}{s}=\phi\left(x^{\prime 1 / p^{e}}\right) \in R
$$

Therefore $\phi\left(x^{1 / p^{e}}\right) \in \mathfrak{c}$, hence $\phi\left(\mathfrak{c}^{1 / p^{e}}\right) \subseteq \mathfrak{c}$, i.e. \mathfrak{c} is ϕ-compatible, and so we have that $\mathfrak{c} \supseteq \tau(R)$.

The result of the computation in Exercise 3.13 can be extended to a characterization of when $\tau(R)=R$:

Theorem 3.19. Suppose R is a domain essentially of finite type over a perfect field k. Then $\tau(R)=R$ if and only if for every $0 \neq c \in R$, there exists $e \geq 1$ and $\phi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$ such that $\phi\left(c^{1 / p^{e}}\right)=1$.

The paper leaves only one step to us: to reduce to the case where R is local. Consider the R-module $R / \tau(R)$. This module is 0 (i.e. $\tau(R)=R$) if and only if $(R / \tau(R))_{\mathfrak{m}}=0$ for all maximal ideals \mathfrak{m} of R. However, since $(R / \tau(R))_{\mathfrak{m}} \cong R_{\mathfrak{m}} / \tau(R)_{\mathfrak{m}} \cong R_{\mathfrak{m}} / \tau\left(R_{\mathfrak{m}}\right)$, it suffices to consider the case where R is a local ring with maximal ideal \mathfrak{m}.

We call a ring R such that $\tau(R)=R$ a strongly F-regular ring.
Theorem 3.21. A regular ring is strongly F-regular.
Exercise 3.22. A strongly F-regular ring is Cohen-Macaulay
Exercise 3.23. Suppose that $R \subseteq S$ is a split inclusion of normal domains and S is strongly F-regular. Then R is strongly F-regular and hence CohenMacaulay.

Solution. Let $s: S \rightarrow R$ be a splitting map for the inclusion $R \subseteq S$. Let $0 \neq c \in R$. Then $0 \neq c \in S$, and so since S is strongly F-regular, there exists $\phi \in \operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$ such that $\phi\left(c^{1 / p^{e}}\right)=1$. Since ϕ is an S-module homomorphism it is also an R-module homomorphism, so the map $\left.\phi\right|_{R^{1 / p^{e}}} \in$ $\operatorname{Hom}_{R}\left(R^{1 / p^{e}}, S\right)$ is an R-module homomorphism. Now let $\psi=\left.s \circ \phi\right|_{R^{1 / p^{e}}}$. Then $\psi \in \operatorname{Hom}_{R}\left(R^{1 / p^{e}}, R\right)$ and $\psi\left(c^{1 / p^{e}}\right)=1$. Therefore R is strongly F-regular. By Exercise 3.22, then, R is Cohen-Macaulay.

3.3 Test ideals in Gorenstein local rings

Exercise 3.26. Suppose that $S=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a perfect field, and consider the S-linear map $\Psi: S^{1 / p^{e}} \rightarrow S$ sending $\left(x_{1} \cdots x_{n}\right)^{\left(p^{e}-1\right) / p^{e}}$ to 1 and all other basis elements $\left(x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}}\right)^{1 / p^{e}}, 0 \leq \lambda_{i} \leq p^{e}-1$ to zero. Then Ψ generates $\operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$ as an $S^{1 / p^{e}}$-module.

Note! There is a typo in the original paper, which states that Ψ generates $\operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$ as an S-module, which can easily be shown false.

Solution. Let $\phi \in \operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$. Then for every tuple $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $0 \leq$ $\lambda_{i} \leq p^{e}-1$, there exists $a\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in S$ such that ϕ takes the basis element $\left(x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}}\right)^{1 / p^{e}}$ to $a\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. We claim that

$$
\phi=\sum_{0 \leq \lambda_{i} \leq p^{e}-1}\left(a\left(\lambda_{1}, \ldots, \lambda_{n}\right)^{p^{e}} x_{1}^{p^{e}-1-\lambda_{1}} \cdots x_{n}^{p^{e}-1-\lambda_{n}}\right)^{1 / p^{e}} \cdot \Psi .
$$

Recall that the action of $S^{1 / p^{e}}$ on $\operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$ is by premultiplication; that is, for $s^{1 / p^{e}} \in S^{1 / p^{e}}$ and $\varphi \in \operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$, we have that $s^{1 / p^{e}} \cdot \varphi \in$ $\operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$ is given by $\left(s^{1 / p^{e}} \cdot \varphi\right)\left(x^{1 / p^{e}}\right)=\varphi\left(s^{1 / p^{e}} x^{1 / p^{e}}\right)=\varphi\left((s x)^{1 / p^{e}}\right)$. We now prove the above equality by checking that they act equivalently on
basis elements. Let $\left(\lambda_{1}^{*}, \ldots, \lambda_{n}^{*}\right)$ be a tuple with $0 \leq \lambda_{i} \leq p^{e}-1$. Then

$$
\begin{aligned}
& \left(\sum_{0 \leq \lambda_{i} \leq p^{e}-1}\left(a\left(\lambda_{1}, \ldots, \lambda_{n}\right)^{p^{e}} x_{1}^{p^{e}-1-\lambda_{1}} \cdots x_{n}^{p^{e}-1-\lambda_{n}}\right)^{1 / p^{e}} \cdot \Psi\right)\left(\left(x_{1}^{\lambda_{1}^{*}} \cdots x_{n}^{\lambda_{n}^{*}}\right)^{1 / p^{e}}\right) \\
= & \sum_{0 \leq \lambda_{i} \leq p^{e}-1} \Psi\left(\left(a\left(\lambda_{1}, \ldots, \lambda_{n}\right)^{p^{e}} x_{1}^{p^{e}-1-\lambda_{1}+\lambda_{1}^{*}} \cdots x_{n}^{p^{e}-\lambda_{n}+\lambda_{n}^{*}}\right)^{1 / p^{e}}\right) \\
= & \sum_{0 \leq \lambda_{i} \leq p^{e}-1} a\left(\lambda_{1}, \ldots, \lambda_{n}\right) \Psi\left(\left(x_{1}^{p^{e}-1-\lambda_{1}+\lambda_{1}^{*}} \cdots x_{n}^{p^{e}-\lambda_{n}+\lambda_{n}^{*}}\right)^{1 / p^{e}}\right)
\end{aligned}
$$

By construction, the term $\Psi\left(\left(x_{1}^{p^{e}-1-\lambda_{1}+\lambda_{1}^{*}} \cdots x_{n}^{p^{e}-\lambda_{n}+\lambda_{n}^{*}}\right)^{1 / p^{e}}\right)$ is nonzero if and only if each $p^{e}-1-\lambda_{i}+\lambda_{i}^{*}$ is congruent to $p^{e}-1$ modulo p^{e}. Since $0 \leq \lambda_{i}, \lambda_{i}^{*} \leq p^{e}-1$, we have that $0 \leq p^{e}-1-\lambda_{i}+\lambda_{i}^{*} \leq 2 p^{e}-2$. Therefore this term is nonzero exactly when $p^{e}-1-\lambda_{i}+\lambda_{i}^{*}=p^{e}-1$, i.e. when $\lambda_{i}=\lambda_{i}^{*}$. Therefore

$$
\begin{aligned}
& \sum_{0 \leq \lambda_{i} \leq p^{e}-1} a\left(\lambda_{1}, \ldots, \lambda_{n}\right) \Psi\left(\left(x_{1}^{p^{e}-1-\lambda_{1}+\lambda_{1}^{*}} \cdots x_{n}^{p^{e}-\lambda_{n}+\lambda_{n}^{*}}\right)^{1 / p^{e}}\right) \\
= & a\left(\lambda_{1}^{*}, \ldots, \lambda_{n}^{*}\right) \Psi\left(\left(x_{1}^{p^{e}-1} \cdots x_{n}^{p^{e}-1}\right)^{1 / p^{e}}\right) \\
= & a\left(\lambda_{1}^{*}, \ldots, \lambda_{n}^{*}\right) \\
= & \phi\left(\left(x_{1}^{\lambda_{1}^{*}} \cdots x_{n}^{\lambda_{n}^{*}}\right)^{1 / p^{e}}\right) .
\end{aligned}
$$

Therefore the claim is proved, and so Ψ generates $\operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$ as an $S^{1 / p^{e}}$ module. By Lemma 3.24, Φ_{S}^{e} also generates $\operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$ as an $S^{1 / p^{e}}$-module. Also,

$$
\operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right) \cong \operatorname{Hom}_{S}\left(S^{1 / p^{e}}, \omega_{S}\right) \cong\left(\omega_{S}\right)^{1 / p^{e}} \cong S^{1 / p^{e}}
$$

and so we have that $\operatorname{Hom}_{S}\left(S^{1 / p^{e}}, S\right)$ is a faithful cyclic module. Since any two generators of a faithful cyclic module differ by a unit, we have that Ψ and Φ_{S}^{e} are identical up to multplication by a unit in $S^{1 / p^{e}}$.

